Quasi equilibrium methods in population genetics

Ola Hössjer
Dept. of Mathematics
Stockholm University

November 2012

Wright Fisher Model

- Population of 2 N gene (marker) copies
- Allele 1 and 2
- Nonoverlapping generations
- Constant population size
- $P_{t}=$ frequency of Allele 1 , Generation t,

$$
\begin{aligned}
2 N & =10 \\
P_{t} & =0.4 \\
P_{t+1} & =0.5
\end{aligned}
$$

Wright Fisher Model

- Population of 2 N gene (marker) copies
- Allele 1 and 2
- Nonoverlapping generations

- Constant population size
- $P_{t}=$ frequency of Allele 1 , Generation t,

$$
\begin{aligned}
2 N & =10 \\
P_{t} & =0.4 \\
P_{t+1} & =0.5
\end{aligned}
$$

Alleles drawn randomly from parental generation:

$$
P_{t+1} \mid P_{t} \sim \operatorname{Bin}\left(2 N, P_{t}\right) /(2 N)
$$

Variance effective population size $N_{e V}$

Write

$$
P_{t+1}=P_{t}+\varepsilon_{t+1}
$$

where ε_{t+1} is genetic drift, with $E\left(\varepsilon_{t+1} \mid P_{t}\right)=0$ and

$$
\operatorname{Var}\left(\varepsilon_{t+1} \mid P_{t}\right)=\frac{P_{t}\left(1-P_{t}\right)}{2 N_{e V}} \stackrel{W F}{\Longrightarrow} N_{e V}=N .
$$

Variance effective population size $N_{e V}$

Write

$$
P_{t+1}=P_{t}+\varepsilon_{t+1}
$$

where ε_{t+1} is genetic drift, with $E\left(\varepsilon_{t+1} \mid P_{t}\right)=0$ and

$$
\operatorname{Var}\left(\varepsilon_{t+1} \mid P_{t}\right)=\frac{P_{t}\left(1-P_{t}\right)}{2 N_{e V}} \stackrel{\text { WF }}{\Longrightarrow} N_{e V}=N .
$$

Rule of thumb:
More inbreeding \Longrightarrow More genetic drift \Longrightarrow Smaller $N_{\mathrm{e} V}$
In general $N_{e V} \neq N$ due to

- Diploid population
- Spatial structure
- Varying reproductivity
- Time varying population size
- Overlapping generations

Structured population

- s subpopulations
- $m_{k i}$ migration rate from Subpopulation k to i
- N total population size ($=2 N$ gene copies)

Structured population

- s subpopulations
- $m_{k i}$ migration rate from Subpopulation k to i
- N total population size ($=2 N$ gene copies)

$$
\begin{aligned}
\mathbf{M}=\left(m_{k i}\right)_{k, i=1}^{s}= & \text { migration matrix } \\
N a_{i}= & \text { constant subpopulation sizes }
\end{aligned}
$$

where $\sum_{i=1}^{s} a_{i}=1$ and

$$
\mathbf{a}=\left(a_{1}, \ldots, a_{s}\right)=\mathbf{a M}
$$

is a left eigenvector of \mathbf{M} with eigenvalue 1 .

Structured population

- s subpopulations
- $m_{k i}$ migration rate from Subpopulation k to i
- N total population size ($=2 N$ gene copies)

$$
\begin{aligned}
\mathbf{M}=\left(m_{k i}\right)_{k, i=1}^{s}= & \text { migration matrix } \\
N a_{i}= & \text { constant subpopulation sizes }
\end{aligned}
$$

where $\sum_{i=1}^{s} a_{i}=1$ and

$$
\mathbf{a}=\left(a_{1}, \ldots, a_{s}\right)=\mathbf{a M}
$$

is a left eigenvector of \mathbf{M} with eigenvalue 1 .
Overall migration rate $m^{\prime}=\sum_{i=1}^{s} a_{i}\left(m_{i} .-m_{i i}\right)=1-\sum_{i=1}^{s} a_{i} m_{i i}$.

Island model

$$
m_{k i}= \begin{cases}1-m^{\prime}, & i=k \\ m^{\prime} /(s-1), & i \neq k\end{cases}
$$

Linear stepping stone model

$$
m_{k i}= \begin{cases}1-m\left|\mathcal{N}_{k}\right| / 2, & i=k \\ m / 2, & |i-k|=1 \\ 0, & \text { otherwise }\end{cases}
$$

where \mathcal{N}_{k} is the neighbourhood of k. Hence

$$
m^{\prime}=\frac{2}{s} \cdot \frac{m}{2}+\frac{s-2}{s} \cdot m=\frac{m(s-1)}{s}
$$

Circular stepping stone

$$
m_{k i}= \begin{cases}1-m^{\prime}, & i=k \\ m^{\prime} / 2, & (i-k \bmod s)=1 \text { or } s-1 \\ 0, & \text { otherwise }\end{cases}
$$

Rectangular stepping stone $\left(s=s_{1} s_{2}\right)$

$$
m_{\left(k_{1}, k_{2}\right),\left(i_{1}, i_{2}\right)}= \begin{cases}1-\left|\mathcal{N}_{\left(k_{1}, k_{2}\right)}\right| m / 4, & \left(i_{1}, i_{2}\right)=\left(k_{1}, k_{2}\right) \\ m / 4, & \left|i_{1}-k_{1}\right|+\left|i_{2}-k_{2}\right|=1 \\ 0, & \text { otherwise }\end{cases}
$$

where $\mathcal{N}_{\left(k_{1}, k_{2}\right)}$ is the neighbourhood of $\left(k_{1}, k_{2}\right)$. This yields

$$
m^{\prime}=m\left(1-0.5\left(s_{1}^{-1}+s_{2}^{-1}\right)\right) .
$$

Torus stepping stone

$$
m_{\left(k_{1}, k_{2}\right),\left(i_{1}, i_{2}\right)}= \begin{cases}1-m^{\prime}, & \left(i_{1}, i_{2}\right)=\left(k_{1}, k_{2}\right), \\ m^{\prime} / 4, & \left(i_{1}-k_{1} \bmod s_{1}\right)=1 \text { or } s_{1}-1, i_{2}=k_{2} \\ m^{\prime} / 4, & \left(i_{2}-k_{2} \bmod s_{2}\right)=1 \text { or } s_{2}-1, i_{1}=k_{1} \\ 0, & \text { otherwise }\end{cases}
$$

Backward migration matrix B

Let

$$
b_{i k}=P(\text { parent of Subpop } i \text { gene from Subpop } k) \approx \frac{a_{k} m_{k i}}{a_{i}}
$$

Backward migration matrix B

Let

$$
b_{i k}=P(\text { parent of Subpop } i \text { gene from Subpop } k) \approx \frac{a_{k} m_{k i}}{a_{i}}
$$

Since

$$
\sum_{k=1}^{s} b_{i k}=\frac{1}{a_{i}} \sum_{k=1}^{s} a_{k} m_{k i}=\frac{a_{i}}{a_{i}}=1
$$

the backward matrix

$$
\mathbf{B}=\left(b_{i k}\right)_{i, k=1}^{s}
$$

is transition matrix of Markov chain with equilibrium distr

$$
\gamma=\left(\gamma_{1}, \ldots, \gamma_{s}\right)
$$

Example of \mathbf{M} and \mathbf{B}

$$
\begin{aligned}
\mathbf{M} & =\left(\begin{array}{ll}
0.8 & 1.2 \\
0.1 & 0.4
\end{array}\right) \\
& \Downarrow \\
\mathbf{a} & =(1 / 3,2 / 3) \\
\mathbf{B} & =\left(\begin{array}{ll}
0.8 & 0.2 \\
0.6 & 0.4
\end{array}\right) \\
& \stackrel{\Downarrow}{0} \\
\gamma & =(3 / 4,1 / 4) .
\end{aligned}
$$

It can be shown that

$$
m_{k}=\sum_{i=1}^{s} m_{k i}=1, k=1, \ldots, s \Longrightarrow \gamma=\mathbf{a}
$$

Allele frequencies, fixation index

Let

$$
P_{t i}=\text { frequency of Allele } 1 \text { in Subpop } i
$$

and

$$
P_{t}=\sum_{i=1}^{s} a_{i} P_{t i}=\text { frequency of Allele } 1 \text { in whole pop }
$$

in Generation t.

Allele frequencies, fixation index

Let

$$
P_{t i}=\text { frequency of Allele } 1 \text { in Subpop } i
$$

and

$$
P_{t}=\sum_{i=1}^{s} a_{i} P_{t i}=\text { frequency of Allele } 1 \text { in whole pop }
$$

in Generation t. Then

$$
F_{S T}=\text { fixation index }=\frac{\sum_{i=1}^{s} a_{i}\left(P_{t i}-P_{t}\right)^{2}}{P_{t}\left(1-P_{t}\right)}
$$

quantfies spatial diversity of subpopulations.
More migration \Longrightarrow Smaller $F_{S T}$
More genetic drift \Longrightarrow Larger $F_{S T}$

Allele frequency evolvement

Let

$$
P_{t i}=\text { freq of Allele 1, Subpopulation } i \text {, Generation } t
$$

$$
\begin{array}{rrr}
P_{t 1} & =0.4 & P_{t 2}
\end{array}=0.4,
$$

We get the recursion
$P_{t+1, i} \approx P($ Parent of random gene of Subpop i, Gen $t+1$, is Allele 1)

$$
\approx \sum_{k=1}^{s} b_{i k} P_{t k} .
$$

Allele frequency evolvement,vector form

Putting

$$
\mathbf{P}_{t}=\left(P_{t 1}, \ldots, P_{t s}\right)^{T}
$$

we get the recursion

$$
\begin{equation*}
\mathbf{P}_{t+1}=\mathbf{B} \mathbf{P}_{t}+\varepsilon_{t+1} \tag{1}
\end{equation*}
$$

with vector valued genetic drift term satisfying

$$
E\left(\varepsilon_{t+1} \mid \mathbf{P}_{t}\right)=\mathbf{0} \text { and } \operatorname{Var}\left(\varepsilon_{t+1} \mid \mathbf{P}_{t}\right)=\boldsymbol{\Sigma}\left(\mathbf{P}_{t}\right)
$$

- (1) is vector valued heteroscedastic AR process
- Nonstationarity since B has largest eigenvalue 1
- $\boldsymbol{\Sigma}(\cdot)$ depends on reproduction scheme

Reproduction scheme 1: Fertilization precedes migration

Gametes from $N_{e k} \leq N a_{k}$ breeders
$\tilde{P}_{t k} \mid P_{t k} \sim \operatorname{Hyp}\left(2 N a_{k}, 2 N_{e k}, P_{t k}\right) /\left(2 N_{e k}\right)$, followed by fertilization
$P_{t k i}^{*} \mid \tilde{P}_{t k} \sim \operatorname{Bin}\left(2 N a_{k} m_{k i}, \tilde{P}_{t k}\right) /\left(2 N a_{k} m_{k i}\right)$ and migration

$$
P_{t+1, i}=\sum_{k=1}^{s} b_{i k} P_{t k i}^{*}
$$

Reproduction scheme 2: Migration precedes fertilization

Gametes from $N_{e k} \leq N a_{k}$ breeders

$$
\tilde{P}_{t k} \mid P_{t k} \sim \operatorname{Hyp}\left(2 N a_{k}, 2 N_{e k}, P_{t k}\right) /\left(2 N_{e k}\right)
$$ followed by migration

$$
\check{P}_{t i}=\sum_{k=1}^{s} B_{i k} \tilde{P}_{t k}
$$

where

$$
\begin{aligned}
& \left(B_{i 1}, \ldots, B_{i s}\right) \sim \operatorname{Dir}\left(\alpha\left(b_{i 1}, \ldots, b_{i s}\right)\right) \text {, } \\
& \text { and fertilization }
\end{aligned}
$$

$$
P_{t+1, i} \mid \check{P}_{t i} \sim \operatorname{Bin}\left(2 N a_{i}, \check{P}_{t i}\right) /\left(2 N a_{i}\right)
$$

Cointegration idea

Decompose allele frequency vector as

$$
\begin{aligned}
\mathbf{P}_{t} & =P_{t}^{\gamma}(1, \ldots, 1)^{T}+\mathbf{P}_{t}^{0} \\
& =\text { overall frequency }+ \text { spatial frequency fluctuations }
\end{aligned}
$$

where

$$
P_{t}^{\gamma}=\sum_{i=1}^{s} \gamma_{i} P_{t i} \stackrel{\gamma=\mathbf{a}}{=} P_{t} .
$$

Cointegration idea

Decompose allele frequency vector as

$$
\begin{aligned}
\mathbf{P}_{t} & =P_{t}^{\gamma}(1, \ldots, 1)^{T}+\mathbf{P}_{t}^{0} \\
& =\text { overall frequency }+ \text { spatial frequency fluctuations }
\end{aligned}
$$

where

$$
P_{t}^{\gamma}=\sum_{i=1}^{s} \gamma_{i} P_{t i} \stackrel{\gamma=\mathbf{a}}{=} P_{t}
$$

This gives recursion

$$
\begin{cases}P_{t+1}^{\gamma}=P_{t}^{\gamma}+\varepsilon_{t+1}^{\gamma}, & \text { (genetic drift part) } \\ \mathbf{P}_{t+1}^{0}=\mathbf{B}^{0} \mathbf{P}_{t}^{0}+\varepsilon_{t+1}^{0}, & \text { (spatial fluctuation recursion part) }\end{cases}
$$

where

$$
\varepsilon_{t+1}^{\gamma}=\sum_{i=1}^{s} \gamma_{i} \varepsilon_{t i}, \quad \varepsilon_{t+1}^{0}=\varepsilon_{t+1}-\varepsilon_{t+1}^{\gamma}(1, \ldots, 1)^{T}
$$

Cointegration idea

Decompose allele frequency vector as

$$
\begin{aligned}
\mathbf{P}_{t} & =P_{t}^{\gamma}(1, \ldots, 1)^{T}+\mathbf{P}_{t}^{0} \\
& =\text { overall frequency }+ \text { spatial frequency fluctuations }
\end{aligned}
$$

where

$$
P_{t}^{\gamma}=\sum_{i=1}^{s} \gamma_{i} P_{t i} \stackrel{\gamma=\mathbf{a}}{=} P_{t}
$$

This gives recursion

$$
\begin{cases}P_{t+1}^{\gamma}=P_{t}^{\gamma}+\varepsilon_{t+1}^{\gamma}, & \text { (genetic drift part) } \\ \mathbf{P}_{t+1}^{0}=\mathbf{B}^{0} \mathbf{P}_{t}^{0}+\varepsilon_{t+1}^{0}, & \text { (spatial fluctuation recursion part) }\end{cases}
$$

where

$$
\varepsilon_{t+1}^{\gamma}=\sum_{i=1}^{s} \gamma_{i} \varepsilon_{t i}, \quad \varepsilon_{t+1}^{0}=\varepsilon_{t+1}-\varepsilon_{t+1}^{\gamma}(1, \ldots, 1)^{T}
$$

and by Perron-Frobenius' Theorem and Jordan decomposition

$$
\mathbf{B}=\mathbf{V}\left(\begin{array}{cccc}
1 & \ldots & & \\
0 & d_{2} & \ldots & \\
\vdots & & \ddots & \ldots \\
0 & \ldots & 0 & d_{s}
\end{array}\right) \mathbf{V}^{-1} \text { and } \mathbf{B}^{0}=\mathbf{V}\left(\begin{array}{cccc}
0 & \ldots & & \\
0 & d_{2} & \ldots & \\
\vdots & & \ddots & \ldots \\
0 & \overline{0} & 0 & d_{s}
\end{array}\right) \mathbf{V}^{-1}
$$

Quasi equlibrium

Dividing \mathbf{P}_{t} by $\sqrt{P_{t}^{\gamma}\left(1-P_{t}^{\gamma}\right)}$ makes:

- Spatial fluctuation part quasi stationary.
- Genetic drift part still non-stationary.

Quasi equlibrium

Dividing \mathbf{P}_{t} by $\sqrt{P_{t}^{\gamma}\left(1-P_{t}^{\gamma}\right)}$ makes:

- Spatial fluctuation part quasi stationary.
- Genetic drift part still non-stationary.

The drift covariance matrix

$$
\boldsymbol{\Sigma}=\frac{\operatorname{Cov}\left(\mathbf{P}_{t+1} \mid P_{t}^{\gamma}\right)}{P_{t}^{\gamma}\left(1-P_{t}^{\gamma}\right)}=\frac{E\left(\boldsymbol{\Sigma}\left(\mathbf{P}_{t}\right) \mid P_{t}^{\gamma}\right)}{P_{t}^{\gamma}\left(1-P_{t}^{\gamma}\right)}
$$

and spatial fluctuation covariance matrix

$$
\mathbf{\Lambda}=\frac{\operatorname{Cov}\left(\mathbf{P}_{t}^{0} \mid P_{t}^{\gamma}\right)}{P_{t}^{\gamma}\left(1-P_{t}^{\gamma}\right)}
$$

Quasi equlibrium

Dividing \mathbf{P}_{t} by $\sqrt{P_{t}^{\gamma}\left(1-P_{t}^{\gamma}\right)}$ makes:

- Spatial fluctuation part quasi stationary.
- Genetic drift part still non-stationary.

The drift covariance matrix

$$
\boldsymbol{\Sigma}=\frac{\operatorname{Cov}\left(\mathbf{P}_{t+1} \mid P_{t}^{\gamma}\right)}{P_{t}^{\gamma}\left(1-P_{t}^{\gamma}\right)}=\frac{E\left(\boldsymbol{\Sigma}\left(\mathbf{P}_{t}^{0}\right) \mid P_{t}^{\gamma}\right)}{P_{t}^{\gamma}\left(1-P_{t}^{\gamma}\right)}
$$

and spatial fluctuation covariance matrix

$$
\mathbf{\Lambda}=\frac{\operatorname{Cov}\left(\mathbf{P}_{t}^{0} \mid P_{t}^{\gamma}\right)}{P_{t}^{\gamma}\left(1-P_{t}^{\gamma}\right)}
$$

can be used to find

$$
N_{e V} \approx \frac{1-(\mathbf{a}-\gamma) \boldsymbol{\Lambda}(\mathbf{a}-\gamma)^{T}}{2\left(\mathbf{a}(\mathbf{B}-\mathbf{I}) \boldsymbol{\Lambda}(\mathbf{B}-\mathbf{I})^{T} \mathbf{a}^{T}+\mathbf{a} \boldsymbol{\Sigma} \mathbf{a}^{T}\right)} \stackrel{\gamma=\mathbf{a}}{=} \frac{1}{2 \mathbf{a} \boldsymbol{\Sigma} \mathbf{a}^{T}}
$$

and

$$
F_{S T} \approx \frac{\sum_{i=1}^{s} a_{i}\left((\mathbf{I}-\mathbf{1 a}) \boldsymbol{\Lambda}(\mathbf{I}-\mathbf{1 a})^{T}\right)_{i i}}{1-(\mathbf{a}-\gamma) \boldsymbol{\Lambda}(\mathbf{a}-\gamma)^{T}} \stackrel{\mathbf{a}}{=} \sum_{i=1}^{s} a_{i} \Lambda_{i i}
$$

Algorithm

Linear system of equations

$$
\begin{aligned}
\operatorname{vech}(\boldsymbol{\Sigma}) & =\mathbf{f}-\mathbf{F} \operatorname{vech}(\boldsymbol{\Lambda}) \\
\operatorname{vech}(\boldsymbol{\Lambda}) & =\operatorname{Gvech}(\boldsymbol{\Sigma})
\end{aligned}
$$

in the $s(s+1)$ unknown parameters

$$
\left\{\begin{aligned}
\operatorname{vech}(\boldsymbol{\Sigma}) & =\left\{\Sigma_{i k} ; i \geq k\right\} \\
\operatorname{vech}(\boldsymbol{\Lambda}) & =\left\{\Lambda_{i k} ; i \geq k\right\}
\end{aligned}\right.
$$

with \mathbf{F} and \mathbf{G} square matrices of order $s(s+1) / 2$ and \mathbf{f} a column vector of length $s(s+1) / 2$.

Algorithm

Linear system of equations

$$
\begin{aligned}
\operatorname{vech}(\boldsymbol{\Sigma}) & =\mathbf{f}-\mathbf{F} \operatorname{vech}(\boldsymbol{\Lambda}) \\
\operatorname{vech}(\boldsymbol{\Lambda}) & =\mathbf{G} \operatorname{vech}(\boldsymbol{\Sigma})
\end{aligned}
$$

in the $s(s+1)$ unknown parameters

$$
\left\{\begin{aligned}
\operatorname{vech}(\boldsymbol{\Sigma}) & =\left\{\Sigma_{i k} ; i \geq k\right\} \\
\operatorname{vech}(\boldsymbol{\Lambda}) & =\left\{\Lambda_{i k} ; i \geq k\right\}
\end{aligned}\right.
$$

with \mathbf{F} and \mathbf{G} square matrices of order $s(s+1) / 2$ and \mathbf{f} a column vector of length $s(s+1) / 2$.
Input parameters are:

- Migration matrix $\mathbf{M} \longrightarrow \mathbf{B} \longrightarrow \mathbf{G}$
- Reproduction scenario $\longrightarrow \boldsymbol{\Sigma}(\cdot) \longrightarrow \mathbf{f}, \mathbf{F}$

Fertilization before migration

Migration model	Symbol
Island	Solid
Torus	Dotted and circles
Circular	Dashed
Linear stepping stone	Sqaures

Fixed parameters
$N=450$
$s=9$
$m^{\prime}=0.4$
$a_{k}=1 / 9$
$N_{e k}=N / 9=50$

Migration before fertilization

$$
s=9, N=450, a_{k}=1 / 9, N_{e k}=N a_{k}
$$

Model	α	Symbol
Island	∞	Solid
	100	Dashed
	10	Dash-dotted
	1	Dotted

Model	α	Symbol
Island	10	Dash-dotted
Circular stepstone	10	Solid

Demographic reservoir (source)

$$
m_{1 .}=\ldots=m_{s-1, \cdot}<1<m_{s}
$$

and

$$
m_{k i}= \begin{cases}m_{s} \cdot \beta, & k=s, i<s, \\ m_{s} \cdot(1-(s-1) \beta), & k=i=s, \\ m_{1} \cdot \gamma, & k<s, i=s, \\ m_{1} \cdot \delta / 2, & k<s, i-k= \pm 1 \bmod s-1, \\ m_{1} \cdot(1-\gamma-\delta), & k=i<s, \\ 0, & \text { otherwise. }\end{cases}
$$

Demographic reservoir, fertilization precedes migration

γ
Top :
$m_{1 .}=\ldots=m_{s-1, \cdot}=1 / m_{s}$.
Right:
a_{1} : dotted,
a_{s} : solid

Fixed parameters
$s=9$
$N=450$
$N_{e k}=N a_{k}$
$\delta=0.2$
$\gamma=0$
$m_{1}=0.5$
$m_{s .}=2$

Extensions

- Multipel markers (Nei's $G_{S T}$ instead of $F_{S T}$)
- Spatially invariant migration
- Decompose B by Fourier analysis (instead of Jordan)
- Much faster algorithm
- Spatial correlations

$$
\operatorname{Corr}\left(P_{t i}, P_{t k}\right)=\frac{\Lambda_{i k}}{\sqrt{\Lambda_{i i} \Lambda_{k k}}}
$$

at quasi equilibrium.

- Varying (sub)population sizes
- Diploid populations
- Overlapping generations

References

Hössjer, O., Jorde, P.E. and Ryman, N. (2012). Quasi equilibrium approximations of the fixation index under neutrality: The island model. To appear in Theoretical Population Biology.

Hössjer, O. and Ryman, N. (2012). Quasi Equilibrium, Variance Effective Population Size and Fixation Index for Models with Spatial Structure. Report 2012:4, Mathematical Statistics, Stockholm University. Submitted.

Hössjer, O. (2012). Spatial Autocorrelation for Subdivided Populations with Invariant Migration Schemes. Report 2012:11, Mathematical Statistics, Stockholm University. Submitted.

Olsson, F. Hössjer, O., Laikre, L. and Ryman, N. (2012). On the Variance Effective Size of Fluctuating Populations with Overlapping Generations. In preparation.

