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Abstract

We study interest rate models where the term structure is given
by an affine relation and in particular where the driving stochastic
processes are so-called generalised Ornstein-Uhlenbeck processes.

For many institutional investors it is natural to consider investment
in bonds where the time to maturity of the bonds in the portfolio is
kept fixed over time. We show that the return and variance of such
a portfolio of bonds which are continuously rolled over, also called
rolling horizon bonds, can be expressed using the cumulant generating
functions of the background driving Lévy processes associated with the
OU processes. This allows us to calculate the efficient mean-variance
portfolio. We exemplify the results by a case study on euro swap rates.

We also show that if the short rate, in a risk-neutral setting, is
given by a linear combination of generalised OU processes, the implied
term structure can be expressed in terms of the cumulant generating
functions. This makes it possible to quite easily see what kind of term
structures can be generated with a particular short rate dynamics.
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1 Introduction

Bonds are an important part of many investors’ portfolios. They are some-
times used as a complement to equities since they in general have lower risk
than equities and since they give diversification. Some institutional investors
such as insurance companies are more or less mandated to hold bonds in or-
der to match the interest rate sensitivity of their liabilities. A theory of bond
portfolios is therefore quite necessary to many practitioners. An essential
difference between bonds and equities is that the former have fixed times of
maturity, whereas the latter do not.

This has consequences even in a one-period portfolio model. Consider a
default free bond without coupon payments, a so-called zero coupon bond.
If the investment horizon equals the time of maturity, the bond is risk free,
i.e. the return over the period is known with certainty. If the horizon is longer
than the time to maturity, we know what payment we will receive from the
bond, but what return one may get from reinvesting this payment until the
horizon may be uncertain. If the time period is shorter than the time to
maturity, the price of the zero coupon bond at the horizon is uncertain,
but since we know that the price must equal the face value at the time of
maturity, we have a ”pull-to-par” effect, which gives the price a drift toward
the face value.

Contrast this with the usual random-walk models for stock prices (or log-
prices), where the uncertainty grows with the length of the investment period,
say with the square root of time if one measures uncertainty with standard
deviation of price (or log price).

One way to get around this difference is to consider not an investment in
a single bond with a given time to maturity, but rather an investment in
a strategy where bonds with different times of maturity are repeatedly sold
and bought so that the time to maturity, i.e. the duration, is more or less
fixed. [Rutkowski, 1999] introduced these artificial securities as ’rolling hori-
zon bonds” and [Ekeland and Taflin, 2005] introduced these as ”roll-overs”
in a framework for bond portfolios. One particular way of thinking of a
rolling horizon bond with a given duration is that it is like a bank account
where one has to give a notice to withdraw the money, which can thereafter
only be accessed after a time equalling the duration in length.

The rolling horizon bond, even if an artificial and synthetic security, should
not be considered (only) as a mathematical tool to simplify the analysis of
bond portfolios, since this is close to how institutional investors can think
about their bond holdings. If they hold bonds with respect to certain liabili-
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ties, it is reasonable for them to choose a target duration of the assets which
is close to that of the liabilities in order to minimise the effect of interest rate
changes to the net funding ratio. To be specific, consider a pension fund that
has guaranteed a certain future payment. The only risk free way to hedge
this liability is to buy a default free bond with the time of maturity equal
to the time of payment. If the pension fund is in a steady state, adding new
liabilities with the same time to payment, the duration of the liabilities will
be stable in time as well, and thus also the target duration of the hedging
assets. Deviations from this duration might be appropriate if one expects the
return on bonds to be better for another duration, but this decision must be
made with respect to the duration of the liabilities, since this adds additional
risk. If, on the other hand, the pension fund is in run-off, the duration of
the hedging assets does not need to be continuously adjusted, and one may
simply wait and let the maturing bonds match the liabilities.

In this paper we restrict the study of portfolios of rolling horizon bonds to
models of the yield curve where it can be represented as linear combination
of some stochastic processes. One can compare these with factor models for
equity returns such as the CAPM and the Fama-French three factor model.
Such factor models are useful since they show where the main variation in
returns comes from. For yield curves, one has observed that most of their
changes in shapes can be represented with parallel shifts, and to a lesser
extent with changes in slope and curvature. It is therefore natural to base a
yield curve model on these factors.

Since we are interested in actual future return we are mostly concerned with
what is sometimes called the objective probability measure. Some synonyms
are the data generating measure and the real world measure. This is in
contrast with the risk neutral measure which is implied by the prices in an
arbitrage free market. We reason about the so called objective measure in
order to make investment decisions, and this measure can hardly ever be
fully known, so the decision is more or less dependent on subjective opinions.
Thus it might just as well be called the subjective measure. We will however
also touch upon risk neutral modelling. This comes naturally as we will use
generalised Ornstein-Uhlenbeck processes as factors in our model — these
are general in the sense that they may be driven by any Lévy process rather
than just a Brownian motion. It is well-known that the yield curve can
only have such an affine representation and still belong to an arbitrage free
model if the factors have a certain dynamic which include the generalised
Ornstein-Uhlenbeck processes, see [Duffie et al., 2003]. The lack of arbitrage
also puts restraints on how the loadings on the factors depend on the time
to maturity of the interest rates. We will show how these loadings look in a
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risk neutral affine model driven by a generalised Ornstein-Uhlenbeck process,
which might be of independent interest.

However, we will not in general restrict ourselves to models that are arbitrage
free. The reason is that there are models which are known to represent both
the shape and dynamics of the yield curve without being arbitrage free. It
is in general also hard to estimate the market price of risk related to the
different factors, and this is needed in order to transition between the risk
neutral and the objective probability measure. We exemplify some results
with the dynamic Nelson-Siegel model, which has been used, e.g., by several
central banks. It is not arbitrage free in the mathematical sense but may be
practically indistinguishable from arbitrage free, [Coroneo et al., 2008].

The structure of the paper is as follows: In Section 2 we state some basic
results regarding interest rates and rolling horizon bonds and show how to
express the return of these bonds using forward rates. In Section 3 we recall
the definition of an affine term structure and show that the return of a
portfolio of rolling horizon bonds in this case has a simple structure. The
generalized Ornstein-Uhlenbeck processes are defined in Section 4, together
with some results regarding risk neutral modelling. In Section 5 we consider
portfolios of rolling horizon bonds and perform a case study using euro swap
rates. Section 6 concludes the paper.

The novelties in this paper are the following: In Section 4.2 we show that
if the short rate is described by a certain Ornstein-Uhlenbeck process, one
can easily judge if this process corresponds to a reasonable yield curve. This
is possible since the yield curve can be written in terms of the generating
functions. In Section 5.1 we combine the results in [Rutkowski, 1999] and
[Barndorff-Nielsen and Shephard, 2003] to model the return of rolling hori-
zon bonds. We derive explicit expressions for the mean and covariance, thus
making a mean-variance optimization possible. In Section 5.2 we suggest a
non-parametric method of estimating the unknown parameters in the model.
In Section 5.3 we do a case study. The results of the case study are in some
sense negative, since the constructed portfolios do not perform very well out
of sample. However, it is common that mean-variance portfolios perform
poorly out of sample. Or paper thus shows that more elaborate methods
needs to be used to achieve betters performance.

2 Interest rates and bonds

Let Zt(τ) be the value at time t of a zero coupon bond with maturity t+τ and
nominal value 1 EUR. Let ft(τ

′, τ ′′) be the simple forward rate contracted
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at time t for the period t + τ ′ to t + τ ′′, and let ft(τ) be the instantaneous
forward rate at time t for maturity t+τ . For any mesh 0 = τ0 < · · · < τn = τ ,

Zt(τ) =
n∏
i=1

(1 + (τi − τi−1)ft(τi−1, τi))
−1 = exp

{
−
∫ τ

0

ft(u)du

}
. (1)

Expressed with the continuously compounded spot rate yt(τ),

Zt(τ) = exp{−τyt(τ)},

so that

yt(τ) =
1

τ

∫ τ

0

ft(u)du. (2)

For future reference, note that equation (1) implies that

Zt(τ ′)
Zt(τ ′′)

= 1 + (τ ′′ − τ ′)ft(τ ′, τ ′′) = exp

{∫ τ ′′

τ ′
ft(u)du

}
, (3)

for τ ′ < τ ′′.

We assume that the forward curve ft(τ) is continuous in τ for all times t,
that ft(τ) as a function of t is Riemann integrable for all τ and that

lim
τ∗→τ

sup
t>0
|ft(τ)− ft(τ ∗)| = 0.

Let Rd
t (τ), d for discrete, be the value at time t of the following strategy:

Start at time 0 with 1 EUR. At all times 0 = t0 < t1 < t2 < · · · rebalance to
hold only zero coupon bonds with time to maturity τ . Let ∆i = ti − ti−1.

Proposition 1 ([Rutkowski, 1999]).

1.

Rd
ti

(τ) =
Zti(τ)

Z0(τ)

i∏
k=1

(
1 + ∆kftk(τ −∆k, τ)

)
, i = 0, 1, . . .

2. As the trading frequency tends to infinity, Rd
t converges to

Rt(τ) =
Zt(τ)

Z0(τ)
exp

{∫ t

0

fs(τ)ds

}
, t ∈ R+.
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The proof of the first part follows by induction using (3) and the second part
follows from the first by straightforward Riemann integration.

The strategy of continuously rebalancing a portfolio to hold bonds with
a single time to maturity is said to produce a ”rolling horizon bond” by
[Rutkowski, 1999] and a ”roll-over” by [Ekeland and Taflin, 2005]. If one at
any point in time were to stop rolling over and rather let the bond mature
it would take τ time units until maturity when the principal of the bond
would be paid. In effect one can say that Rt(τ) describes the value of a bank
account where notice of withdrawal must be made τ time units in advance
[Ekeland and Taflin, 2005].

The expression for Rt(τ) can be stated entirely with forward rates using (1):

Rt(τ) = exp

{
−
∫ τ

0

(ft(u)− f0(u))du+

∫ t

0

fs(τ)ds

}
. (4)

Let Xt(τ) = logRt(τ), so that

Xt(τ) = −
∫ τ

0

(ft(u)− f0(u))du+

∫ t

0

fs(τ)ds. (5)

Note that Rt(0) is the value of a money market account which accumulates
the short rate and is available for immediate withdrawal. Thus, the excess
return of rolling bonds with time to maturity τ compared with holding this
money market account, has the following, quite symmetric, expression:

Xt(τ)−Xt(0) = −
∫ τ

0

(ft(u)− f0(u))du+

∫ t

0

(fs(τ)− fs(0))ds.

The average logarithmic return of the rebalancing strategy is

Xt(τ)

t
= −1

t

∫ τ

0

(ft(u)− f0(u))du+
1

t

∫ t

0

fs(τ)ds =
1

t

∫ t

0

fs(τ)ds+O
(
t−1
)
.

Thus if the forward rate process ft(τ) is ergodic with stationary distribution
F , the average logarithmic return from a rolling horizon bond will converge
almost surely to E[f∞(τ)], and the average geometric return will converge
almost surely to exp{E[f∞(τ)]} − 1, where f∞(τ) ∼ F .

3 Affine term structure and portfolios

In the rest of this paper we will consider the case where the forward rate
is given by an affine process, i.e. the dynamics of the forward curve can be
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described by an affine relationship

ft(τ) = κ(τ)′Ft = (κ1(τ), . . . , κn(τ))(F1t, . . . , Fnt)
′. (6)

Note that one of the factors Fkt may be constant, equal to 1 say, in t.

By (2), this is equivalent to assuming an affine relationship for the spot rates:

yt(τ) =
1

τ
κ̄(τ)′Ft,

where κ̄(τ) =
∫ τ

0
κ(u)du.

One example of an affine model is the Vasiček model, where

ft(τ) = µ
1− e−λτ

λ
− σ2

2

(
1− e−λτ

λ

)2

+ e−λτrt.

Here the short rate rt is the only non-constant factor.

Another example is the Nelson-Siegel model, where

ft(τ) = β0t + e−γτβ1t + γτe−γτβ2t.

If one wants an affine model to be arbitrage free, the κ-functions cannot be set
willy-nilly, since they are determined by the dynamics of Ft under the pricing,
or so-called risk neutral, probability measure. See [Duffie et al., 2003] for an
exhaustive treatise on this matter. Of the examples above, the Vasiček model
is arbitrage free whereas the Nelson-Siegel model is not, if βt is given by an
Itô process, see [Filipović, 1999].

We will in Section 4.2 give some consideration to models where the dynamics
of the factors are specified under the pricing measure. We are, however,
mostly interested in the returns of bond investments under the real world
probability measure, which is also called the objective or data generating
measure. It is sometimes possible to specify a market price of risk process
such that the forward rate is an affine process under both the pricing and data
generating measure. See, e.g., [Piazzesi, 2009] for a nice overview of some
possible relations between the two probability measures in order to keep the
affine structure under both of them. Nevertheless, we choose to either give
examples of processes that are affine under the risk neutral measure or the
real world one. One reason to do this is to be able to estimate the functions
κ with as few assumptions as possible, e.g. by using principal components
analysis on panel data of interest rates with several maturities.

7



By combining our assumption (6) with (5),

Xt(τ) = −κ̄(τ)′(Ft − F0) + κ(τ)′F̄t,

where F̄t =
∫ t

0
Fsds. One can now consider portfolios constructed by rolling

horizon bonds at different maturities on the yield curve. A portfolio that
at time zero has a value νi invested in a rolling-horizon bond with time to
maturity τi, and which is never rebalanced between these maturities, will at
time t have the value

Π0
t =

∑
i

νiRt(τi) =
∑
i

νi exp{−κ̄(τi)
′(Ft − F0) + κ(τi)

′F̄t}.

Note that all νi need not be positive if there is a possibility to short the
bonds.

4 Ornstein-Uhlenbeck-type models

In this section we recall some well-known facts about Ornstein-Uhlenbeck
processes. We use Ornstein-Uhlenbeck processes for modelling the factors in
the affine expression of interest rates since they are relatively simple processes
that are mean reverting. This is a desirable property since it is unreasonable
to assume that interest rates could diverge toward infinity, at least in a
non-hyperinflationary economy. We stress again that there are differences
between modelling the dynamics of the factors under the risk neutral measure
and the objective measure. The risk neutral dynamics should be such that
the observed yield curve at any point in time is consistent with the risk
neutral pricing. The objective dynamics, on the other hand, describes how
the yield curve actually changes in time.

4.1 Generalized Ornstein-Uhlenbeck processes

This section is heavily based on [Barndorff-Nielsen and Shephard, 2003]. We
recall the material here for completeness.

Let Zt be a Lévy process and

Yt ≡ e−λtY0 +

∫ t

0

e−λ(t−s)dZs. (7)

We call Yt a generalised Ornstein-Uhlenbeck (OU) process with background
driving Lévy process (BDLP) Zt. This process specialises to the ordinary
Ornstein-Uhlenbeck process when Zt is a Brownian motion.
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If E[log(1+ |Z1|)] <∞, then Yt
d→ Y∞ as t→∞, where Y∞ ≡

∫∞
0
e−λtdZt. If

one lets Y0
d
= Y∞, the process becomes stationary. However, we will mostly

assume that Y0 is constant.

We define the integrated process

Ȳt ≡
∫ t

0

Ysds =
1− e−λt

λ
Y0 +

1

λ

∫ t

0

(1− e−λ(t−u))dZu.

With ε(t;λ) ≡ (1− e−λt)/λ, for λ > 0, and ε(t; 0) ≡ t

Ȳt = ε(t;λ)Y0 +

∫ t

0

ε(t− u;λ)dZu.

We will use the cumulant generating function l(θ ‡X) ≡ logE[eθX ] as a tool
for deriving some useful relations between the distributions of Z, Y and Ȳ .
We will mostly consider positive random variables, for which this cumulant
function is well defined when θ ≤ 0, and Gaussian random variables. In
the general case one can use a cumulant function based on the characteris-
tic function rather than our preferred one based on the moment generating
function transform.

Let

ζ(θ) ≡ l(θ ‡ Z1),

υt(θ) ≡ l(θ ‡ Yt),
υ(θ) ≡ l(θ ‡ Y∞),

υ∗t (θ) ≡ l(θ ‡ Ȳt),

where we assume that Y0 is constant. We also define the joint cumulant
generating function υ◦t (θ1, θ2) ≡ logE[eθ1Yt+θ2Ȳt ]. These generating functions
are related as follows.

ζ(θ) = λθυ′(θ),

υt(θ) = θe−λtY0 +

∫ t

0

ζ(θe−λs)ds,

υ(θ) = l

(
θ ‡
∫ ∞

0

e−λtdZt

)
=

∫ ∞
0

ζ(θe−λt)dt,

υ∗t (θ) = θε(t;λ)Y0 +

∫ t

0

ζ(θε(s;λ))ds,

υ◦t (θ1, θ2) = θ1e
−λtY0 + θ2ε(t;λ)Y0 +

∫ t

0

ζ
(
θ1e
−λs + θ2ε(s;λ)

)
ds.
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4.2 Risk neutral models

When the short rate is a linear combination of independent OU processes
under the risk neutral measure, the yield curve is easily expressed with these
cumulant generating functions. In order to make the presentation clearer,
we start with a one-factor model, i.e.

rt = yt(0) = ft(0) = e−λtr0 +

∫ t

0

e−λ(t−s)dZs

with Zt a Lévy process as before. Note that this is the Vasiček model if Zt =
µt+ σBt, with Bt a standard Brownian motion. When Zt is a subordinator,
i.e. a positive Lévy process, the short rate rt is positive as well.

Letting E[·] denote the expectation under the risk neutral measure, we have

Z0(τ) = e−τy0(τ) = e−
∫ τ
0 f0(u)du = E[e−

∫ τ
0 rsds|r0] = E[e−r̄τ |r0] = eυ

∗
τ (−1).

The yield curve is therefore given by

y0(τ) = −υ
∗
τ (−1)

τ
=
ε(τ ;λ)

τ
r0 −

1

τ

∫ τ

0

ζ (−ε(u;λ)) du,

and the forward curve is

f0(τ) = − d

dτ
υ∗τ (−1) = e−λτr0 − ζ (−ε(τ ;λ)) .

Note that the effect of the current short rate on the yield (forward) curve,
given by the coefficient e−λτ , is the same, regardless of what BDLP Z is used
in the model. Since both functions e−λτ and ε(τ ;λ)/τ are monotone in τ ,
these models cannot reproduce the empirically observed shocks to the yield
curve’s curvature, i.e. the ‘twist’ or ‘butterfly’ factor.

In the Vasiček model ζ(θ) = µθ+σ2θ2/2, which gives the well known expres-
sion

f0(τ) = e−λτr0 + µ
1− e−λτ

λ
− σ2

2

(
1− e−λτ

λ

)2

.

If rt =
∑

kXk,t where X1,t, X2,t, . . . are independent but not necessarily
identically distributed Ornstein-Uhlenbeck processes, the above calculations
are straightforward to generalise, producing

f0(τ) =
∑
k

e−λkτxk,0 −
∑
k

ζk (−ε(τ ;λk)) .
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In [Barndorff-Nielsen and Shephard, 2003], a generalised OU process with
Y∞ ∼ D is called D-OU, and on the other hand, if Z1 ∼ D the process
is called OU-D. We reproduce their table of generating functions for some
different OU processes, with some change in notation. This can be used to
ascertain whether a given OU process has a ζ which produces a reasonable
yield curve.

Model ζ(θ)

OU-Normal(µ,σ2) µθ + σ2θ2/2

OU-Poisson(µ) µ(eθ − 1)

OU-Gamma(ν,α) −ν log(1− θ/α)

OU-Inverse Gaussian(δ,γ) δ
(
γ −

√
γ2 − 2θ

)
Normal(µ,σ2)-OU λµθ + λσ2θ2

Gamma(ν,α)-OU λνθ/(α− θ)
Inverse Gaussian(δ,γ)-OU λδθ/

√
γ2 − 2θ

If λ = 0, then Yt ≡ Zt, i.e. a pure random walk without any mean reversion.
This is not an uninteresting model since the mean reversion might very well
be quite weak over short time horizons. In this case, Y∞ does not exist unless
Zt ≡ 0. Here f0(τ) = r0 − ζ(−τ), which may make it clearer to understand
the effects of the parameters of Z on the shape of the yield curve. If the
short rate is a Brownian motion: rt = r0 + µt+ σBt, the forward rate curve
is f0(τ) = r0 + µτ − σ2τ 2/2. We immediately see that the drift µ gives the
slope, or first derivative, of the forward curve, and the instantaneous variance
σ2 gives the negative of the curvature, or second derivative of the forward
curve.

5 Bond portfolios

In this section we consider the problem of forming portfolios of bonds, in
particular rolling horizon bonds in a mean-variance framework. We show
that under the assumption of an affine term structure driven by generalized
Ornstein-Uhlenbeck processes the expectation and covariance of the return
of rolling horizon bonds can be given quite explicit expression, thus making
a mean-variance optimization tractable. We also provide suggestions for the
estimation of the unknown parameters and give an example of an implemen-
tation in a case study on euro swap rates.
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5.1 Mean-variance portfolio

We would like to find the mean-variance optimal portfolios consisting entirely
of rolling-horizon bonds. We will assume that the forward rate for each
tradable maturity τ is

ft(τ) = κ(τ)′Ft + et(τ),

where Ft is a d-dimensional generalised OU process, under the objective
measure, with independent components and where et(τ) is a residual inde-
pendent of Ft with stationary distribution. We set the current time to t = 0
and will consider a one-period investment with horizon ∆t. Using Eq. (5) we
get the log-return at the investment horizon of a rolling horizon bond based
on zero-coupon bonds of maturity τ

X∆t(τ) = −κ̄(τ)′(F∆t − F0) + κ(τ)′F̄∆t + ē∆t(τ),

where we set the integrated residual

ē∆t(τ) = −
∫ τ

0

(e∆t(u)− e0(u))du+

∫ ∆t

0

es(τ)ds.

The expected return is then

E [R∆t(τ)] = E
[

exp
{
−κ̄(τ)′(F∆t − F0) + κ(τ)′F̄∆t

} ]
E
[

exp {ē∆t(τ)}
]
.

We see that the expected return is effectively the product of two moment
generating functions. Thus when a factor F is given by an OU process Y ,
the cumulant generating function of quantities such as −η̄(Yt − Y0) + ηȲt is
of interest. We have that

l(θ ‡ −η̄(Yt − Y0) + ηȲt) = θη̄Y0 + l(θ ‡ −η̄Yt + ηȲt)

= θη̄Y0 + υ◦t (−η̄θ, ηθ)
= θ(λη̄ + η)ε(t;λ)Y0

+

∫ t

0

ζ
(
θ
(
− η̄e−λs + ηε(s;λ)

))
ds.

From the above result we therefore get that

E [R∆t(τ)] = exp

{
d∑
i=1

(λiκ̄i(τ) + κi(τ)) ε(∆t;λ)Fi,0 + Sτ

}
E
[

exp {ē∆t(τ)}
]
,
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where

Sτ =
d∑
i=1

∫ ∆t

0

ζi
(
− κ̄i(τ)e−λis + κi(τ)ε(s;λi)

)
ds,

and similarly

Cov (R∆t(τ1), R∆t(τ2)) = E [R∆t(τ1)]E [R∆t(τ2)]

[
E [R∆t(τ1)R∆t(τ2)]

E [R∆t(τ1)]E [R∆t(τ2)]
− 1

]
= E [R∆t(τ1)]E [R∆t(τ2)]

[
eSτ1,τ2E

[
exp {ē∆t(τ1) + ē∆t(τ2)}

]
eSτ1+Sτ2E

[
exp

{
ē∆t(τ1)}

]
E
[

exp{ē∆t(τ2)
} ] − 1

]
,

where

Sτ1,τ2 =
d∑
i=1

∫ ∆t

0

ζi
(
− (κ̄i(τ1) + κ̄i(τ2)) e−λis + (κi(τ1) + κi(τ2)) ε(s;λi)

)
ds.

We note that the (co)variance in the return is a consequence of the non-
linearity of the cumulant generating function of the factor processes together
with the (possible) dependence between the residuals of different maturities.
This is natural since a linear cumulant generating function would imply zero
variance.

5.2 Estimation of the mean-variance portfolio

What remains from the previous section is the estimation of the factor pro-
cesses, i.e. of λ and ζ, together with

E
[

exp {ē∆t(τ)}
]

and E
[

exp {ē∆t(τ1) + ē∆t(τ2)}
]
.

The first problem can be handled by choosing an appropriate family of distri-
butions and using a likelihood or least-squares based estimation. We however
also propose a non-parametric method based on noting that the cumulant
generating function can be written as

ζ(s) =
∞∑
n=1

cn
n!
sn,

where cn is the nth cumulant, provided all cumulants exist. Some calculations
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then show that∫ t

0

ζ
(
− κ̄e−λs + κε(s;λ)

)
ds

=
∞∑
n=1

cn
n!

1

λn

[
n∑
k=0

(
n

k

)
(−λκ̄− κ)n−k κkε (t, λ(n− k))

]

≡
∞∑
n=1

cn
n!
an(t;κ, κ̄).

The above sum seems to converge quite fast so that by estimating the first
few cumulants and truncating the sum we should have a reasonable estimate
of the integral.

Toward this, let us assume that we have observed a process Yt of the type of
Eq. (7) at intervals ∆ and we would like to find estimates of the cumulants
of Z1. We get that

Yt+∆ = e−λ∆Yt+

∫ t+∆

t

e−λ(t+∆−s)dZs ≡ aYt+ε∆ = E [ε∆]+aYt+(ε∆−E [ε∆]).

Thus, regressing Yt+∆ on Yt we get estimates Ê [ε∆], â and ε̂∆, and we can
set λ̂ = − log â

∆
. Now,

l(θ ‡ ε∆) = l

(
θ ‡
∫ ∆

0

e−λsdZs

)
=

∫ ∆

0

ζ(θe−λs)ds

=

∫ ∆

0

∞∑
n=1

cn
n!
θne−λnsds =

∞∑
n=1

cn
n!
θnε(∆, λn).

We then have as a natural estimator

ĉn(Z1) =
ĉn(ε∆)

ε(∆, λ̂n)
,

where we can estimate the cumulants of ε∆ by noting that the nth cumulant
can be expressed as a polynomial in the n first moments, e.g.

c1 =E [ε∆] ,

c2 =E
[
(ε∆ − E [ε∆])2

]
,

c3 =E
[
(ε∆ − E [ε∆])3

]
,

c4 =E
[
(ε∆ − E [ε∆])4

]
− 3

(
E
[
(ε∆ − E [ε∆])2

])2
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and simply plugging the sample moments into these expressions. It is well
worth noting that the above moment estimators coincide with the maximum
likelihood estimators for the OU-Normal model, when one use only the first
two moments.

The solution of how to estimate E
[

exp {ē∆t(τ)}
]

and E
[

exp {ē∆t(τ1) + ē∆t(τ2)}
]

is not as immediate. The residuals e∆t(τ) are effectively random functions
and thus complicated to model in general and we therefore suggest to es-
timate the above expectations non-parametrically. We assume that we are
observing m traded maturities 0 < τ1 < τ2 < . . . < τm, also set τ0 = 0,
and that we for each such maturity have observed the forward rate ft(τi)
and the factor process Ft at time points t0 < t1 < . . . < tn, all a time equal
to the investment horizon ∆t apart. We may thus calculate the residuals
et0(τj), et1(τj), . . . , etn(τj), for each j ≤ m. By replacing integrals with sums
we approximate the ith integrated residual ē∆ti(τj) by

ē∆ti(τj) ≈ −
j∑

k=1

(τk − τk−1)
eti(τk)− eti−1

(τk) + eti(τk+1)− eti−1
(τk+1)

2

+ ∆t
eti(τj) + eti−1

(τj)

2
.

As an estimate of E
[

exp {ē∆t(τ)}
]

we then take the sample mean of the expo-
nent of the above quantities and analogously for E

[
exp {ē∆t(τ1) + ē∆t(τ2)}

]
.

5.3 Case study

We will in this section estimate the mean-variance optimal portfolio of rolling
horizon bonds. To estimate our model we use monthly quotes of euro swap
rates from August 2001 to June 2011 provided by Bloomberg Finance LP.
We have quotes for maturities τ = 1, 2, . . . , 25 years. From these we can
bootstrap the corresponding zero coupon rates. Since euro swaps have annual
payments and we have data for maturities one year apart out to 25 years,
we can derive the zero coupon rates without having to resort to any curve
fitting or interpolation.

Figure 1 shows the interest rates for some of the maturities in the data. We
see that the changes in interest rate level between different maturities are
positively correlated and that shorter maturities usually have lower interest
rates than longer ones. From these data we can try to obtain the returns
from holding the zero coupon bonds for a short period and then rolling them
over. Since the data is monthly, we use monthly rolling, and since we do not
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Figure 1: Some zero coupon yields derived from euro swap rates. Source:
Bloomberg Finance LP

have observations of the rates for maturities τ − 1/12 years, we use linear
interpolation. Figure 2 shows the cumulative return of all these 25 rolling
horizon bonds. At the end the cumulative returns are ordered with higher
return for those with longer maturity. The returns for different maturities
have positive correlation and longer maturities implies a larger variance of
the returns.

It might be instructive to compare the return of a rolling horizon bond with
a maturing bond. Figure 3 shows the cumulative return from investing in a
bond with 9 years and 10 months left to maturity and either rolling over this
bond each month to a new one with 9 years and 10 months to maturity, or
keeping it to maturity. At first the returns are similar, but as the remaining
time to maturity decreases, the zero coupon bond has progressively lower
returns and lower variance of its returns. For good measure the total returns
of a European stock index is also shown. At the end of the period the stocks
have yielded essentially a zero return and with hindsight bonds were clearly
the better investment. Within the sample one also finds that the correlation
of the monthly returns from the stocks and the bonds were negative for
all maturities, so that bonds would also have provided clear diversification
benefits. However, we will in the remainder focus on pure bond portfolios.

In our study we only include rolling horizon bonds. While inclusion of lia-
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Figure 2: Cumulative return from investing in rolling horizon bonds with
time to maturities from 1 to 25 years. Source: Bloomberg Finance LP

bilities and other asset classes in the case study would make it more closely
comparable to the situation facing an institutional investor. The paper is
focused on rolling horizon bonds and we believe that the behavior of the
model is more clear if we don’t include other assets.

We will compare portfolios based directly on the sample means and covari-
ances of the returns as shown in Figure 2 with portfolios based on a Nelson-
Siegel model of the yield curve, where

yt(τ) = β0t + β1t

(1− e−γτ

γτ

)
+ β2t

(1− e−γτ

γτ
− e−γτ

)
.

This corresponds to setting

κ1(τ) = 1,

κ2(τ) = e−γτ ,

κ3(τ) = γτe−γτ .

Here we take γ = 0.7308, as in [Diebold and Li, 2006] where γ = 0.0609 with
time in months.

For each month we fit the three β parameters using least-squares. The fit is
not improved much by chosing another value of γ. The root mean squared
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Figure 3: Cumulative returns from investing in a rolling horizon bond, a zero
coupon bond, and the stock market. Source: Bloomberg Finance LP

errors are of the order a couple of basis points, i.e. hundreds of a percentage
point. The time series of the parameters is plotted in Figure 4.

We will assume independence between the time series. The study by [Diebold and Li, 2006]
shows that the independence assumption produces better forecasts than a
model with dependence, and we will proceed accordingly. Our application
and setting is somewhat different from theirs but the findings in the study
gives some credence to our assumption. We fit three independent OU-Normal
processes to the time series, using the maximum likelihood estimates. The
fitted parameters can be found in Table 1.

β0 β1 β2

µ̂(%) 4.53 -1.88 -3.27
σ̂2 (%) 0.65 1.06 2.74
λ (year−1) 0.76 0.35 1.60

Table 1: OU parameter estimates

We will in the case-study not consider the cumulant based estimation ap-
proach, as discussed in Section 5.2. This since it turns out that the portfolios
obtained from this approach, using as much as the first 6 cumulants, are very
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Figure 4: Time series plot of Nelson-Siegel parameters fitted to zero coupon
yields.

similar to the ones from the OU-Normal assumption, thus also indicating that
this is a fair assumption.

With this, and the estimates of the residuals discussed above, we are able to
calculate estimates of the expected return and covariance of rolling horizon
bonds based on zero coupon bonds of the above mentioned maturities. For
the Nelson-Siegel model, the expected returns of course depends on the initial
shape of the yield curve, whereas the expected returns estimated directly
from the observed returns do not. Figure 5 shows two yield curves, one so-
called “normal” with positive slope which in fact is the mean curve in the
sample, and one so-called “inverted” curve where interest rates for shorter
maturities are higher than those with longer maturities. Yield curves are
seldom inverted, and when they are, it is typically a sign of distress. For
example, in our data the yield curve was slightly inverted at the end of 2008
at the height of a financial crisis. Figure 6 shows how the inverted curve,
which admittedly is exaggerated in our example, produce different expected
returns compared with the normal. Since interest rates for shorter maturities
are higher than those with longer, the former are expected to decrease more,
and depending on the maturity the expected returns may even be higher
for shorter maturities than longer, and longer maturities may have negative
expected returns.
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Figure 5: The two initial yield curves considered.
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Figure 6: The expected returns of rolling horizon bonds for the two initial
yield curves.

The result of the portfolio optimization for a one month horizon, starting
from the normal yield curve of Figure 5, and with no short selling, is de-
picted in Figure 7. We can make some observations from this picture. The
middle and lower panel show the composition of each portfolio on the effi-
cient frontier for the method based on the direct returns (let us call it “the
empirical portfolio”) and the method based on the OU yield curve model
(“the Nelson-Siegel portfolio”). In both panels, increasing risk and expected
return corresponds to an increase in average time to maturity of the rolling
horizon bonds. We also see that the the empirical portfolio seldom has more
than three rolling horizon bonds and that the Nelson-Siegel portfolio seldom
has more than two. That so few bonds are included in a portfolio with given
risk is reasonable since 99.7% of all variation of the returns is explained by
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the three first factors in a principal component analysis. That fewer are
needed in the Nelson-Siegel model may be due to the fact that it imposes
more rigidity to the possible changes in the yield curve.

In the case of the inverted yield curve, the Nelson-Siegel model produces
portfolios according to the same pattern as for the normal yield curve, but
with the maximum maturity being about 5 years since the expected return
decreases when increasing the maturity further.

For a one year horizon the composition of the empirical portfolios along the
efficient frontier is essentially the same as the one for the one month horizon,
as seen in Figure 8. The main difference is that the expected returns and
volatility has increased due to the longer time horizon. For the Nelson-
Siegel portfolios there are some changes in composition for lower returns and
volatilities, but it is still the case that few bonds are needed in order to achieve
an efficient portfolio. There is however a difference when one compares the
efficient frontiers of both models. The Nelson-Siegel frontier does not reach
as far as the empirical one since the assumption of mean reversion decreases
the expected return of bonds with longer maturity. The mean reversion also
decreases the volatility of the returns.

Figure 9 shows the frontier for the Nelson-Siegel portfolios when short selling
is allowed. In particular, the portfolios have been constrained to have zero
net position with maximum 50% long and 50% short position. Portfolios
with higher risk and expected return are funded by being short the 1 year
bond and long bonds with longer maturities. (This position is usually called
a flattener since it makes better returns as the yield curve flattens. For
less risky portfolios the model prescribes portfolios that are long bonds with
intermediate maturities and are short bonds with both shorter and longer
maturities. This portfolio makes better returns if the curvature of the yield
curve decreases.)

In-sample returns can be deceiving so we also want to check the out-of-
sample performance. Since the Nelson-Siegel model takes the current shape
of the yield curve into account — in contrast to the empirical portfolios —
one may hope that it would perform better over time. We estimate both
models for every month with a three year rolling window of data and check
the performance of the portfolio with the maximum expected return, the
minimum expected return and 8 portfolios with equally spaced intermediate
expected returns. We produce the efficient frontiers for both a one month
horizon and a one year horizon. We also include the performance of the
portfolio that ex ante would perform the best if the yield curve is unchanged
from one month to the next. In fixed income parlance, it maximizes the carry
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Figure 7: Top figure shows efficient frontiers for a one month horizon together
with the empirical (crosses) and OU model (circles) individual rolling horizon
bonds included in the optimization. Bottom two figures show corresponding
portfolios.
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Figure 8: Top figure shows efficient frontiers for a one year horizon together
with the empirical (crosses) and OU model (circles) individual rolling horizon
bonds included in the optimization. Bottom two figures show corresponding
portfolios.
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Figure 9: Top figure shows efficient frontiers for a one month horizon with
zero net position together with the OU model individual rolling horizon bonds
(circles) included in the optimization. Bottom two figures show correspond-
ing portfolios.
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Figure 10: Out-of-sample performance on a one month horizon. The ten
plusses and circles correspond to the ten portfolios on the efficient frontier
for the empirical and Nelson-Siegel model, respectively.

(incl. rolldown).

Figure 10 shows the abysmal performance of both the empirical portfolios
and the Nelson-Siegel methods for the one month horizon. The relation
between mean return and volatility is not even increasing. The naive carry
portfolio which does not take any history into account other than the starting
curve handily outperforms both of the other two methods. Figure 11 shows
the cumulative return of the maximum expected return portfolios for the
different strategies. It is clear that the volatility of both the empirical and
the Nelson-Siegel portfolios is high. It is disappointing that the Nelson-Siegel
model is unable to capitalize on its knowledge of the starting yield curve. One
possible conclusion is that the mean reversion is too low to be of use over a
one month horizon.

On a one year horizon things look better as shown in Figure 12, but the
naive carry method still outperforms the two other methods. The returns
that underlies Figure 12 come from overlapping series since the portfolios are
reestimated each month.

One can see the effect of different starting points in Figure 13. It shows
the twelve different performances one get when starting estimation in each
of the twelve months of the year. One of the marks represents estimating
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Figure 11: Cumulative returns from the maximum return portfolios from
the empirical and Nelson-Siegel model, together with the maximum carry
portfolio and the rolling horizon bonds with 1 year and 25 years to maturity.

both portfolios with data from January to December and then letting both
run for a year and then repeating the estimation with the last year’s data.
Another mark represents estimating the portfolios with data from February
to January and then lettig both run for twelve months, and then repeating
the estmation with the new data. The remaining ten marks represent the
respective results when starting from March, . . . , December, respectively. We
see that the Nelson-Siegel method has lower variance of its returns compared
to the empirical mean-variance method.

That the mean-variance portfolio of rolling horizon bonds performs so poorly
out of sample should be understood as a failure of the mean-variance ap-
proach and not as a failure of the rolling horizon bonds. This pattern is well
known from e.g. equites. In a real application one would have to use more
advanced methods, see for example [Black and Litterman, 1992].

6 Conclusion

We have studied so called rolling horizon bonds, where the time to maturity
is held fixed, in particular under the assumption of an affine term structure
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Figure 12: Out-of-sample performace on a one year horizon. The ten plusses
and circles correspond to the ten portfolios on the efficient frontier for the
empirical and Nelson-Siegel model, respectively.

where the stochastic processes are generalised OU processes. We show that
the return and variance of a portfolio of such bonds can be expressed using the
cumulant generating functions associated with the generalised OU processes.
This allows for calculation of the efficient mean-variance portfolios and we
also provide some suggestions for the estimation of the unknown parameters.
The results can be used by an investor seeking to invest in bonds with a fixed
time to maturity, for example a pension fund.

In a case study using euro swap rates we see that the estimated mean-variance
portfolios does not perform well in out of sample testing. This should however
be attributed to the failures of the mean-variance procedure when the market
parameters need to estimated. In a real application more advanced portfolio
selection methods should be used. But since the mean-variance approach is
a standard method we believe it serves to illustrate the usefulness of the first
part of the paper.

We have also seen that if we assume that the short-rate is given by an affine
relation in a risk-neutral setting the term-structure is given by the cumulant
generating functions associated with the generalised OU process. This pro-
vides an intuitive way of examining the possible term structures that can be
generated by a certain short rate dynamics.
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Figure 13: Cumulative annualized returns for the maximum return portfo-
lios for the empirical model against the Nelson-Siegel model for 12 different
starting months. The Nelson-Siegel model gives the better return for 8 out
of 12 months, and the range of returns is markedly lower than those of the
empirical model.
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