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Abstract. We present a framework on how to hedge the interest rate
sensitivity of liabilities discounted by an extrapolated yield curve. The
framework is based on functional analysis in that we consider the ex-
trapolated yield curve as a functional of an observed yield curve and
use its Gâteaux variation to understand the sensitivity to any possible
yield curve shift. We apply the framework to analyse the Smith-Wilson
method of extrapolation that is proposed by the European Insurance
and Occupational Pensions Authority (EIOPA) in the coming EU legis-
lation Solvency II, and the method recently introduced, and currently
prescribed, by the Swedish Financial Supervisory Authority.

1. Introduction

Insurance companies, especially life assurance companies, can have liabilities
further into the future than there exists a liquid market for fixed income
financial assets. These liabilities can therefore not be given a pure market
value, but must be discounted by a yield that is to some extent model based
and extrapolated from market yields beyond some last liquid point (LLP).

This issue is related to the fact that one typically wants a yield curve for a
continuum of times to maturity, whereas only a discrete number of financial
instruments are used for deriving the curve. Furthermore, the price of a zero
coupon bond is the only directly observable true market discount factor, and
zero coupon bonds are not that common. One therefore has to bootstrap a
yield curve even for time to maturities shorter than the LLP.

The extrapolation method is sometimes essentially the same as the bootstrap
method, and the framework presented in this paper can be used to analyse
them both from the same point of view, viz. that we want to know the
sensitivity of a discount factor for a given time to maturity with respect to
all market rates that are used to build the discount curve. We will however
focus on extrapolation and not bootstrapping in itself.

The idea is to compute the total differential of the discount factor with re-
spect to the prices of market instruments used to build the curve. This is
essentially the same thing as computing the key rate durations of a liability
discount factor. This could become unwieldy as the differential would have
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as many terms as the number of market instruments used. To obtain qual-
itative results on different extrapolation methods, we consider an idealised
case where a continuum of zero coupon bonds are used for curve construc-
tion. The differential in this case is replaced with the Gâteaux variation,
and the sum in the discrete case is in general replaced by an integral which
turns out to be easy to interpret.

We apply this framework to some simple extrapolation schemes, among
them the method prescribed by Swedish Financial Supervisory Authority
(SFSA) [7], and the so called Smith-Wilson method prescribed by European
Insurance and Occupational Pensions Authority (EIOPA) for the coming
EU wide Solvency II regulations, [2, 6].

Since we are mostly interested in qualitative results we will use continuously
compounded rates when we describe the methods, even where the legislation
might use annual compounding. We limit the our investigation to the case
of instantaneous changes in the market yield curve. Changes over longer
time spans are also of importance in practice since hedges need to be reset.

Qualitatively then, the SFSA method makes all liabilities beyond the last
market observation sensitive to the zero coupon yield at that observation,
whereas the Smith-Wilson method makes them sensitive to both the zero
coupon yield and the forward rate at the last market observation. The
dependency on the forward rate has been noted by other researchers in
the special case of annually spaced market rates for “typical” shapes of the
market yield curve, see e.g. [4]. We show how this is an intrisic feature of the
method regardless of the shape of the market yield curve. The dependency
on the last forward rate is unfortunate as it would be very hard to initiate a
hedge in any substantial size, since exposure to a forward rate is replicated
by shorting one bond and going long another.

The main contributions of this paper are twofold. Firstly, the framework
provides a straightforward way to compute the optimal hedge of liabilities
with regards to an extrapolation method. Secondly, the composition of
the optimal hedge allows for a discussion of whether a given extrapolation
method is feasible for the individual insurance company and for the financial
market as a whole.

This paper proceeds with an introduction to the general theory and frame-
work in Section 2, and we then present some extrapolation methods in Sec-
tion 3. In Section 4, we apply the theory to the methods and derive the
optimal hedges, if possible, and in Section 5 we discuss the results and out-
looks to future research.

2. Theory

2.1. Discount factors and yields. Let y be a generic yield curve and let
Dt := e−tyt be the discount factor for time to maturity t with y as discount
curve. We write Dt[y] to stress that it is a function of y. We use brackets to
highlight arguments that are themselves functions, i.e. Dt[y] can be called a
functional.
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Our analysis will mostly be static, in that we will consider instantaneous
changes in a yield curve and its consequences. We take the present time
to be 0 so that we can refer to “time to maturity” simply as “maturity” or
“time”. The unit of time is usually taken to be years, and we will restrict
our analysis to times t ∈ T := [0, T ] where T is arbitrary but fixed, say
T = 200 to cover most imaginable insurance cash flows.

We let z denote the market zero coupon bond curve so that Dt[z] is the price
of a zero coupon bond with maturity t, and let z̄ denote the discount curve
to be used for valuing liabilities, i.e. the present value of one unit of liability
at time t is Dt[z̄]. We will consider several cases where z̄ is a function of
z and we write z̄[z] to stress this. We also define D̄t[z] := Dt[z̄[z]] — or in
other notation D̄ := D ◦ z̄ — for the liability discount factor as a function
of market rates.

The general theory only uses the (zero coupon) yields, but for some applica-
tions we need forward rates. We define the market (instantaneous) forward
rate ft := d

dt(tzt) and the discount forward rate f̄t := d
dt(tz̄t), so that

(1) zt =
1

t

∫ t

0
fs ds,

and similarly for z̄ and f̄ .

Since we intend to do some functional analysis with yield and discount curves
we must decide on a space of functions for them. In general we assume
that z ∈ Cs(T ), the space of cadlag functions with at most a finite number
of jumps, with norm ‖z‖ := supt∈T |zt|. When we need the existence of
forward rates we assume that z ∈ C1

s (T ), the space of of cadlag functions
with at most a finite number of jumps and with first derivatives, with norm
‖z‖ := supt∈T |zt|+ supt∈T |z′t|. Both these are normed linear spaces, see [5,
Ch. 1.3]. One could probably choose larger spaces, but these suffice for the
applications we have in mind.

Furthermore, we assume that z̄ is defined on the whole of Cs(T ) — or C1
s (T )

when forward rates are needed — and has range in the respective space.

2.2. Cash flows and present values. We represent a generic cash flow
with a function C, where Ct is defined as the cumulative cash flow in the
interval [0, t]. Note that the function C has a jump at t if there is a lump
sum payment at time t. We will somewhat sloppily refer to the cash flow
represented by C simply as “the cash flow C” or “C”. We insist on C being
of bounded variation, i.e. that it can be written as a difference of two non-
decreasing functions, C = C+ − C−. This seems reasonable with the two
terms representing, say, inflows (C+) and outflows (C−). The present value
of C discounted by the yield curve y is given by the Stieltjes integral

P [y;C] := C0 +

∫
T
Dt[y] dCt.

The integral is well defined since C is of bounded variation.
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We define C∗t [y] := C0 +
∫ t

0 Ds[y]dCt as the present value of the cash flow up
to time t so that P [y;C] = C0 +

∫
T dC

∗
t [y] = C∗T [y] and, at least informally,

dC∗t [y] = Dt[y]dCt is the present value of the cash flow at time t. We will
drop the argument in the notation when it can be inferred from the context.
Typically, A∗t = A∗t [z] and L∗t = L∗t [z̄].

The market value of asset cash flows represented by the function A and the
discounted values of liabilities represented by the function L are thus P [z;A]
and P [z̄;L] respectively. We define P̄ [z;L] := P [z̄[z];L], i.e. the discounted
value of the liabilities as a function of z.

2.3. Hedging. Let L be a liability cash flow. We say that the asset cash
flow A is a perfect hedge of L if for all z

(2) P [z;A] = P̄ [z;L].

We say that z̄ is perfectly hedgeable if there for all L exists a perfect hedge.

A is a first order hedge of L (at z) if

P [z + ε∆z;A]− P [z;A] = P̄ [z + ε∆z;L]− P̄ [z;L] + o(ε).

Note that the definition of first order hedge is contingent on z: A might be a
first order hedge of L at one z but not another. Also note that a first order
hedge at z does not necessarily have P [z;A] = P̄ [z;L]: it is any possible
change in present value of the liabilities — as the market yield curve changes
from z to z+ ε∆z — that is matched by the assets (up to a remainder small
in ε), not the present value itself.

We say that z̄ is first order hedgeable if there for all L and at all z exists a
first order hedge.

2.4. Functional derivatives and Taylor approximation. In this sub-
section 2.4, f will denote a generic functional and not necessarily the forward
curve.

The Gâteaux variation, or simply the variation, of a function f [g] in the
direction h is defined by

(3) δf [g|h] := lim
ε→0+

f [g + εh]− f [g]

ε
.

The variation is homogenous of degree one in h and we will use this for
Taylor approximation, i.e. if g changes to g+ ∆g we have, see [5, Thm 1.5],

(4) f [g + ∆g] = f [g] + δf [g|∆g] +R(∆g),

where limε→0+ R(ε∆g)/ε = 0.

Note that h in (3) and ∆g in (4) in general can be functions (or functionals)
themselves. We clearly need g+ ∆g to be in the domain of f in (4), and we
will in the following always assume that the shift, ∆g in this case, is such
that this criterion is fulfilled, e.g. by having a small enough norm.
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The following chain rule holds

(5) δ(f ◦ g)[h|k] = δf
[
g[h]

∣∣δg[h|k]
]
.

Remark. There are more restrictive versions of derivatives on function
spaces that one could use. For example, if one restrics δf [g|h] to be linear
and bounded in h one get the so-called Gâteaux differential, and if further-
more the remainder R in the Taylor expansion (4) tends to 0 uniformly in ∆g
and not only along the ray {ε∆g : ε > 0}, i.e. lim‖∆g‖→0R(∆g)/‖∆g‖ = 0,
one get the so-called Fréchet differential. The linear functional δf [g| · ] is
called the Gâteaux and Fréchet derivative, in the respective cases — see [3].

Example 3 below shows why the linearity of the differential cannot be taken
for granted in the applications we consider, and that we therefore need the
generality afforded by the Gâteaux variation.

Exemple 1. The variation of a discount factor Dt[y] in the direction ∆y is
δDt[y|∆y] = −t∆ytDt[y] since

δDt[y|∆y] = lim
ε→0+

Dt[y + ε∆y]−Dt[y]

ε
= lim

ε→0+

e−t(yt−ε∆yt) − e−tyt
ε

= −t∆yte−tyt = −t∆ytDt[y].

Exemple 2. For the present value of a cash flow we have for a general direc-
tion ∆y

δC∗T [y|∆y] = δP [y;C|∆y] =

∫
T
δDt[y|∆y] dCt

= −
∫
T
t∆ytDt[y] dCt = −

∫
T
t∆yt dC

∗
t [y](6)

In the special case where ∆y is a constant function, say ∆yt = c for all t,
we get

δC∗T [y|∆y] = −c
∫
T
t dC∗t [y]

With c = −1 we call this quantity the dollar duration of C (at y). We
call it dollar duration regardless of in what currency C is denominated. In
practice one often consider the case c = −0.0001 (a basis point), and talk
of the dollar value of a basis point (DV01). The duration of C is defined as
the dollar duration divided by the present value:

Dur[y, C] :=

∫
T t dC

∗
t [y]

C∗T [y]
.

Exemple 3. Let z̄t[z] := max(0, zt − c) for some positive constant c, i.e. the
liability discount rate is equal to the market rate adjusted downwards with
c and put to 0 if this difference is negative. Similar constructions abound
in various “stress tests” of liability discount rates that supervisory agencies
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use. By the definition (3) we get

δz̄t[z|∆z] = lim
ε→0+

max(0, zt + ε∆zt − c)−max(0, zt − c)
ε

=


0, zt < c

0, zt = c and ∆zt ≤ 0

∆zt, zt = c and ∆zt > 0

∆zt, zt > c.

The Gâteaux variation δz̄[z|∆z] is clearly not linear in ∆z at z if zt = c for
some t.

The second order Gâteaux variation of f in directions h and k is

δ2f [g|h, k] := lim
ε→0+

δf [g + εk|h]− δf [g|h]

ε
,

and to ease notation we write δ2f [g|h] := δ2f [g|h, h] when both directions
are the same. This will be used for second order Taylor approximation:

f [g + ∆g] = f [g] + δf [g|∆g] +
1

2
δ2f [g|∆g] +R2(∆g),

with limε→0+ R2(ε∆g)/ε2 = 0.

The chain rule for the second order variation reads

δ2(f ◦ g)[h|k, l] = δ2f
[
g[h]

∣∣δg[h|k], δg[h|l]
]

+ δf
[
g[h]

∣∣δ2g[h|k, l]
]
,

or with both directions the same,

δ2(f ◦ g)[h|k] = δ2f
[
g[h]

∣∣δg[h|k]
]

+ δf
[
g[h]

∣∣δ2g[h|k]
]
.

Exemple 4. The second order variation of a discount factor Dt[y] in the
direction ∆y is δ2Dt[y|∆y] = t2(∆yt)

2Dt[y]. For a present value of a cash
flow we have δ2C∗T [y|∆y] =

∫
T t

2(∆yt)
2 dC∗t . When the yield curve y shifts

in a parallel fashion, i.e. ∆yt = c for some constant c for all t, δ2C∗T [y|∆y] =
c2
∫
T t

2 dC∗t . The quantity
∫
T t

2 dC∗t
/
C∗T is called the convexity of C (at y).

Exemple 5. By the chain rule, the second order variation of D̄t[z] in the
direction ∆z is

δ2D̄t[z|∆z] =
(
t2(δz̄t[z|∆z])2 − tδ2z̄t[z|∆z]

)
D̄t[z]

and thus

(7) δ2P̄ [z;L|∆z] =

∫
T

(
t2(δz̄t[z|∆z])2 − tδ2z̄t[z|∆z]

)
dL∗t .

2.5. General results. Let us first consider perfect hedges. The follow-
ing proposition shows that perfect hedgeability is equivalent to the liability
discount factor being affine in the market discount factors.

Proposition 1. z̄ is perfectly hedgeable if and only if for all t, D̄t[z] =

P [z;C(t)] for some cash flow C(t) independent of z. The perfect hedge has

the form As = L0 +
∫
T C

(t)
s dLt.
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Proof. To prove necessity, we want to show that perfect hedgeability implies
the existence of the cash flow C(t) of the theorem. Consider the liability cash

flow L
(t)
s := 1{s ≥ t}, representing a lump sum of 1 at time t, and let A(t)

be the perfect hedge of L(t). By the definition of a discount factor and the
definition of a perfect hedge, (2), we have D̄t[z] = P̄ [z;L(t)] = P [z;A(t)],

and we can let C(t) = A(t). Also note that A
(t)
s = L

(t)
0 +

∫
T C

(u)
s dL

(t)
u .

To prove sufficiency, we want to show that the asset cash flow A of the
theorem is a perfect hedge.

P [z;A] = A0 +

∫
s∈T

Ds[z]dAs

= L0 +

∫
t∈T

C
(t)
0 dLt +

∫
s∈T

Ds[z]

∫
t∈T

dC(t)
s dLt

= L0 +

∫
t∈T

(
C

(t)
0 +

∫
s∈T

Ds[z] dC
(t)
s

)
dLt

= L0 +

∫
T
P [z;C(t)] dLt

= L0 +

∫
T
D̄t[z] dLt = P̄ [z;L].

�

We now turn to first order hedgeability.

Proposition 2. z̄ is first order hedgeable at z if and only if δP [z;A|∆z] =
δP̄ [z;L|∆z], provided the Gâteaux variation exists, and in that case the first
order hedge A solves

(8)

∫
T
t∆zt dA

∗
t =

∫
T
tδz̄t[z|∆z] dL∗t

Proof. Applying the Taylor approximation (4) to P [z + ∆z;A] and P̄ [z +
∆z;L] gives us

P [z + ∆z;A]− P [z;A] = δP [z;A|∆z] +R(∆z)

P̄ [z + ∆z;L]− P̄ [z;L] = δP̄ [z;L|∆z] +R(∆z),

and first order hedgeability is thus equivalent to δP [z;A|∆z] = δP̄ [z;L|∆z].
Equation (8) follows from equation (6) and the chain rule (5).

−δP [z;A|∆z] =

∫
T
t∆zt dA

∗
t

−δP̄ [z;L|∆z] = −
∫
T
δD̄t[z|∆z] dLt = −

∫
T
δDt

[
z̄[z]
∣∣δz̄[z|∆z]] dLt

=

∫
T
tδz̄t[z|∆z]Dt[z̄[z]] dLt =

∫
T
tδz̄t[z|∆z] dL∗t

�
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We will use equation (8) repetedly and call it the hedge equation.

If A is a first order hedge of L, the second order Taylor expansion can be
used to understand how well the hedge performs. By equation (7),

P [z + ∆z;A]− P [z;A]− (P̄ [z + ∆z;L]− P̄ [z;L])

=
1

2

(
δ2P [z;A|∆z]− δ2P̄ [z;L|∆z]

)
+R2(∆z)

=
1

2

(∫
T
t2(∆zt)

2 dA∗t

−
∫
T

(
t2(δz̄t[z|∆z])2 − tδ2z̄t[z|∆z]

)
dL∗t

)
+R2(∆z).(9)

The sensitivity of the present value of liabilities with respect to the param-
eters of z̄, is also of interest. If θ is a scalar parameter,

(10)
d

dθ
P [z̄;L] =

∫
T

d

dθ
Dt[z̄] dLt = −

∫
T
t
dz̄t
dθ

dL∗t .

3. Some extrapolation methods

Here we will describe six possible extrapolation methods. As noted in the
introduction we will use continuously compounded interest rates even if the
methods prescibed by law might use annual compounding. We describe
these methods in the idealised case where there zero coupon bond prices are
available for all maturities up to some specified time.

Methods 1 and 2 are described starting from zero coupon yields, whereas the
methods 3 and 4 are described starting from forward rates. Methods 1 and
3 do not really extrapolate the respective type of curve but set the long term
yield or forward rate to a predetermined constant value. Methods 2 and 4 are
constant extrapolation of the respective type of curve. Method 5 is prescibed
by the Swedish Financial Supervisory Authority (SFSA), and method 6,
called the Smith-Wilson method, is suggested by European Insurance and
Occupational Pensions Authority (EIOPA) to be used under Solvency II.

3.0. Commonalities. All the methods have z̄t = zt for t ≤ τ . The time
to maturity τ is sometimes called the last liquid point (LLP). The methods
differ in their expressions for z̄t with t ∈ E := (τ, T ], i.e. in the extrapolated
part of the yield curve.

Methods 1, 3, 5, and 6 have a predetermined limiting value for the forward
rate, f̄∞ := limt→∞ f̄t, called the ultimate forward rate (UFR). Note that
the existence of the limit f̄∞ implies that limt→∞ z̄t = f̄∞, though the
convergence to the limiting value is slower for z̄ than for f̄ .

Methods 5 and 6 both have an additional parameter κ > τ that is interpreted
as the time to maturity where the extrapolated forward rate should equal or
be close enough to the UFR. Details follow in the respective sections below.
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Many proposed regulatory methods actually add a constant c, or a con-
stant curve ct, to the market yield curve z before it is used to derive the
bootstrapped and extrapolated curve, i.e. one uses z̄[z + c] instead of z̄[z].

The constant c is introduced to adjust the market rates for issues such as
(a.) the zero rates z might have a credit risk component if they are based on
swaps (c < 0), and (b.) the supervisory agency might want to give insurance
companies some relief (c > 0).

This implies that D̄t = e−tctDt for t ≤ τ , so the cash flows — or parts of
cash flows — that were perfectly hedgeable when c had not been introduced
are still perfectly hedgeable. For first order hedgeability, we have to consider
shifts ∆z of the yield curve z + c rather than z, and since δz̄[z + c|∆z] =
δz̄[z|∆z] the important part of the hedge equation (8) is unaffected.

The sensitivity of liabilities with respect to changing c, say from c to c+∆c,
is also quite transparent since we can apply (6) with ∆c substituted for ∆y.

We therefore proceed with c = 0.

3.1. Method 1. Predetermined long term zero coupon yields. This
is not really an extrapolation method as all zero coupon yields beyond τ are
set to a constant. It is nevertheless useful as a baseline method.

z̄t = f̄∞, t ∈ E ,

which implies f̄t = f̄∞ and D̄t = e−f̄∞t. Note that z̄ has a discontinuity at
τ unless zτ happens to equal f̄∞.

3.2. Method 2. Constant extrapolation of zero coupon yields. Here

z̄t = zτ , t ∈ E ,

which implies f̄t = zτ and D̄t = e−tzτ = D
t/τ
τ . This method gives a dis-

count curve that is continuous at τ , though it might have a kink, i.e. a
discontinuous first derivative, at τ .

3.3. Method 3. Predetermined long term forward rates. This method
is similar to Method 1 though it introduces constant forward rates beyond
τ rather than constant zero coupon rates.

f̄t = f̄∞, t ∈ E ,

which implies

z̄t =
τ

t
zτ +

(
1− τ

t

)
f̄∞,

and D̄t = e−τzτ−(t−τ)f̄∞ = e−(t−τ)f̄∞Dτ .

Note that even if the forward curve f̄ is discontinuous at τ , the discount
curve z̄ is not. If f̄ is discontinuous at τ , the discount curve z will have a
kink at τ .
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3.4. Method 4. Constant extrapolation of forward rates. This method
is similar to Method 2 though it constantly extrapolates forward rates be-
yond τ rather than zero coupon rates.

f̄t = fτ , t ∈ E ,

which implies

z̄t =
τ

t
zτ +

(
1− τ

t

)
f̄τ .

and D̄t = e−τzτ−(t−τ)f̄τ .

Since the forward curve f̄ is continuous at τ , z̄ has no kink there.

3.5. Method 5. SFSA. This method is prescribed for Swedish insurance
companies by the SFSA [7] and it is an elaboration on Method 3, where
predetermined long term discount forward rate f̄∞ is phased in linearly
between τ and κ.

f̄t :=

{
κ−t
κ−τ ft + t−τ

κ−τ f̄∞, τ < t ≤ κ,
f̄∞ t > κ.

We show in Appendix A.1 that

z̄t =

{
κ−t
κ−τ zt + 1

t
1

κ−τ
∫ t
τ szsds+ t−τ

κ−τ
(
1− τ

t

) f̄∞
2 , τ < t ≤ κ,

1
t

1
κ−τ

∫ κ
τ szsds+

(
1− τ+κ

2t

)
f̄∞, t > κ.

Since the forward curve f̄ is continuous at τ and κ, z̄ has no kinks there.

3.6. Method 6. Smith-Wilson. This method has been suggested by
EIOPA [2] and is usually described in terms of interpolation and extra-
polation of a finite number of discount factors [2, 6]. For a curve built from
the market rates at time to maturities t1, . . . , tN ,

D̄t := e−f̄∞t +

N∑
i=1

W (t, ti)ζi,

where

W (s, t) := e−f̄∞(s+t)
(
αmin(s, t)− e−αmax(s,t) sinh(αmin(s, t))

)
,

and where ζ := (ζ1, . . . , ζN ) is determined by D̄ti = Dti for i = 1, . . . , N .
As written here, this model has a free parameter α > 0. This parameter
governs the speed of convergence for the forward rates towards the UFR;
the higher the α, the faster the convergence. The actual EIOPA method
requires that α shall be set to ensure that |f̄κ − f̄∞| is less than or equal
to a specified value ε with κ > τ . If fτ is close enough to f̄∞, α is not
well-defined.

A comprehensive analysis of the case where α is defined by a convergence
criterion is beyond the scope of this paper, but we will indicate the necessary
steps in that direction.
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We show in Appendix B.1 that the continuous version of this method, when
market observations are used up to τ , has the discount factor

D̄t = e−f̄∞(t−τ)Dτ

(
1 + (f̄∞ − fτ )

1− e−α(t−τ)

α

)
, t ∈ E .

Note that 1−e−α(t−τ)
α is increasing from 0 to 1

α as t goes from τ to ∞. Thus,
the discount factor will become negative for high enough values of t unless
fτ ≤ f̄∞ + α. This problem with the Smith-Wilson method has also been
noted by others, e.g. Rebel [4].

Provided then that fτ ≤ f̄∞ + α, we have

(11) z̄t =
τ

t
zτ +

(
1− τ

t

)
f̄∞ −

1

t
log

(
1 + (f̄∞ − fτ )

1− e−α(t−τ)

α

)
,

and

(12) f̄t = f̄∞ −
(f̄∞ − fτ )e−α(t−τ)

1 + (f̄∞ − fτ )1−e−α(t−τ)
α

.

A zero coupon yield curve is arbitrage free if and only if the correspond-
ing forward curve is non-negative. The previously described extrapolation
methods are clearly arbitrage free if the market curve z is arbitrage free and
f̄∞ ≥ 0.

For the Smith-Wilson curve we can do the following analysis. Since e−α(t−τ)

is decreasing from 1 as t increases from τ , the forward rate f̄t tends mono-
tonously toward f̄∞ as t increases from τ . This means that forward rates f̄t
are non-negative for all t ∈ E provided that fτ ≥ 0 and f̄∞ ≥ 0. The Smith-
Wilson method thus provides an arbitrage free extrapolated yield curve in
this continuous setting. The Smith-Wilson curve is however not necessarily
arbitrage free in the case when it is fitted to a finite number of market yields,
see Appendix B.2.

4. How to hedge

We proceed by analysing each method of Section 3. In order to apply the
hedging equation (8) we need the Gâteaux variation δz̄[z|∆z]. If the zero
coupon yield curve changes from z to z + ∆z, then the forward rate curve
changes from f to f + ∆f , where ∆ft := d

dt(t∆zt), since f is linear in z.

Since all methods have a perfect hedge for cash flows at times t ≤ τ , we
assume that Lτ = 0 in order to focus on cash flows for times t ∈ E . We also
assume LT > 0 to avoid trivialities.

4.1. (Not) hedging Method 1. We recall that z̄t := z̄∞ for t > τ , and
thus δz̄t[z|∆z] = 0. The hedge equation reads (recall that Lτ = 0),∫

E
t∆zt dA

∗
t =

∫
E
tδz̄t[z|∆z] dL∗t = 0
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and this holds if At = 0 for all t, i.e. the “extrapolated” part of the discount
curve is not hedged. This is reasonable since it is not sensitive to changing
market rates. This is also a perfect hedge according to Proposition 1, where

we have C
(t)
s = e−f̄∞t for all s and t.

4.2. Hedging Method 2. In this method D̄t = D
t/τ
τ for t ∈ E , and since it

is nonlinear in Dτ , by Proposition 1 there can be no perfect hedge. Turning
then to first order hedges, we have z̄t := zτ , so δz̄t[z|∆z] = ∆zτ . Here the
hedge equation is ∫

E
t∆zt dA

∗
t = ∆zτ

∫
E
t dL∗t .

This holds if dA∗t = 1{t = τ} 1
τ

∫
E t dL

∗
t . The hedge has a lump sum at the

LLP whose dollar duration τ dA∗τ equals that of the dollar duration of all
liabilities with times to maturities t ∈ E :

∫
E t dL

∗
t .

If this method were to be mandated for all insurance companies, it would put
a lot of buying preasure on the zero coupon bond with maturity τ since that
is needed to hedge all longer liabilities. This could in turn lower zτ which
would increase the value of the liabilities, and this could necessitate even
further hedging by companies who had not been fully hedged previously,
driving the yield even lower.

It is also worth noting that the market value of the hedge is larger than the
present value of the liabilities. In order words, this means that a premium
equal to the present value of liabilities is not enough to buy the required
hedge, and an insurance company would have to resort to leverage.

Another issue with the method is that the first order hedge is lacking con-
vexity compared to the liabilities. This is seen by inspecting (7) for this
method. The second order variation of the hedge is∫

T
t2(∆zt)

2 dA∗t = τ(∆zτ )2

∫
E
t dL∗.

Since δ2z̄[z|∆z] = 0, the second order variation of the liabilities is∫
E

(
t2(δz̄t[z|∆z])2 − tδ2z̄t[z|∆z]

)
dL∗t = (∆zτ )2

∫
E
t2 dL∗t .

The difference of the second order variations is

τ(∆zτ )2

∫
E
t dL∗ − (∆zτ )2

∫
E
t2 dL∗t = −(∆zτ )2

∫
E
t(t− τ) dL∗t < 0.

The consequence of this is that the hedge must be increased regardless of
whether the yield increases or decreses. This variable exposure could in
practice be achieved by buying options — both calls and puts — on the
zero coupon bond used for hedging, so an introduction of this method could
also conceivably increase option prices (implied volatilities).
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4.3. Hedging Method 3. For this method D̄t = e−(t−τ)f̄∞Dτ , which is
linear in Dτ , and it is therefore possible to hedge this method perfectly, by

taking C
(t)
s = e−(t−τ)f̄∞1{s ≥ τ}. It is also instructive to see the first order

properties of the hedge.

z̄t =
τ

t
zτ + (1− τ

t
)f̄∞

for t ∈ E and therefore

δz̄t[z|∆z] =
τ

t
∆zτ .

We arrive at the hedge equation∫
E
t∆zt dA

∗
t = τ∆zτ

∫
E
dL∗t .

The solution is dA∗t = 1{t = τ}
∫
E dL

∗
t = 1{t = τ}L∗T . Similarly as for

Method 2 the hedge consists of a lump sum at the LLP. The difference is
that the market value of the lump sum should equal the present value of
all liabilities at times s ≥ τ , i.e.

∫
E dL

∗
t , whereas the hedge for Method 2

requires matching of dollar durations.

Since
∫
E dL

∗
t <

1
τ

∫
E t dL

∗
t , the hedge for Method 3 requires less than Method

2 to be invested at the LLP τ . The problem with all hedgers wanting to
invest in the zero coupon bond with maturity τ would thus be diminished.

Also, since the market value of the hedge equals the present value of the
liability, no leverage is needed.

4.4. (Impossibility of) hedging Method 4. Here

z̄t =
τ

t
zτ + (1− τ

t
)fτ

for t ∈ E , so

δz̄t[z|∆z] =
τ

t
∆zτ + (1− τ

t
)∆fτ

and we get the hedge equation∫
E
t∆zt dA

∗
t = τ∆zτ

∫
E
dL∗t + ∆fτ

∫
E
(t− τ) dL∗t .

We recognize the first term on the right hand side from the hedge equation
of Method 3, and know how to hedge that. The last term with ∆fτ is
troublesome. A proper hedge of that would require an exposure to the
forward rate at time τ and no other yields at no other times.

A forward rate agreement (FRA) is a derivative that provides exposure to
the forward rate over a certain interval, say τ − ε to τ . It can be replicated
by the asset flow

dFt =

{
1
ε , t = τ − ε
−1
ε e

∫ τ
τ−ε fs ds, t = τ,
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i.e. one agrees today to borrow 1
ε units at time τ − ε and repay 1

ε e
∫ τ
τ−ε fs ds

units at time τ . Note that the market value of these two flows cancel each
other:

dF ∗τ−ε = Dτ−ε dFτ−ε =
1

ε
Dτ−ε =

1

ε
e−(τ−ε)zτ−ε =

1

ε
e−τzτ e

∫ τ
τ−ε fs ds

= −e−τzτ dFτ = −Dτ dFτ = −dF ∗τ ,

so the market value of this contract is zero at inception: F ∗T =
∫
T dF

∗
t = 0,

and its interest rate sensitivity is

δF ∗T [z|∆z] =

∫
T
t∆zt dF

∗
t =

1

ε
Dτ

(
− (τ − ε)∆zτ−ε + τ∆zτ

)
= Dτ

1

ε

∫ τ

τ−ε
∆fs ds.

Note that the value increases with increasing forward rate in contrast to
bond values decreasing with increasing yield.

In order to isolate ∆fτ we would have to let ε → 0. However, that would
mean that the amount borrowed, 1

ε , would diverge to infinity.

This problem is of course artificial in the sense that it appears due to us
insisting on working with a continuum of maturities. In reality one would
be exposed to the forward rate between the last two maturities used in con-
structing the yield curve. It could nonetheless be problematic, though not
impossible, to hedge this exposure since the necessary forward rate agree-
ment would entail one being short zero coupon bonds at the second to last
maturity and long zero coupon bonds at the last maturity, and this might be
hard to achieve in sufficient size, especially if the whole insurance industry
wants to short the same bond.

4.5. Hedging Method 5 (SFSA). This method is defined in terms of
forward rates and as we show in Appendix A.1,

z̄t =

{
κ−t
κ−τ zt + 1

t
1

κ−τ
∫ t
τ szs ds+ t−τ

κ−τ
(
1− τ

t

) f̄∞
2 , τ < t ≤ κ,

1
t

1
κ−τ

∫ κ
τ szs ds+

(
1− τ+κ

2t

)
f̄∞, t > κ.

The corresponding discount factor D̄t is not affine in the market discount
factors, so by Proposition 1 we can have no perfect hedge. However, first
order hedgeability is possible. The Gâteaux variation is

δz̄t[z|∆z] =

{
κ−t
κ−τ∆zt + 1

t
1

κ−τ
∫ t
τ s∆zs ds, τ < t ≤ κ,

1
t

1
κ−τ

∫ κ
τ s∆zs ds, t > κ,
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and the hedge equation is∫
T

∆zt dA
∗
t =

∫ κ

τ

κ− t
κ− τ

t∆zt dL
∗
t +

∫ κ

τ

(
1

κ− τ

∫ t

τ
s∆zs ds

)
dL∗t

+

∫ T

κ

(
1

κ− τ

∫ κ

τ
s∆zs ds

)
dL∗t

=

∫ κ

τ

κ− t
κ− τ

t∆zt dL
∗
t +

∫ κ

τ

(
1

κ− τ

∫ κ

t
dL∗s

)
t∆zt dt

+
1

κ− τ

∫ T

κ
dL∗s

∫ κ

τ
t∆zt dt

=

∫ κ

τ

κ− t
κ− τ

t∆zt dL
∗
t +

∫ κ

τ

(
1

κ− τ

∫ T

t
dL∗s

)
t∆zt dt.

The hedge is thus dA∗t = κ−t
κ−τ dL

∗
t + ( 1

κ−τ
∫ T
t dL∗s) dt for τ < t ≤ κ.

The hedge consists of two terms. One, κ−t
κ−τ dL

∗
t , matches the corresponding

liability cash flow at time t to a linearly decreasing extent. The other,

( 1
κ−τ

∫ T
t dL∗s) dt = 1

κ−τ (L∗T − L∗t ) dt, consists of a flow that is proportional
to the present value of all liabilities larger than or equal to t.

The extrapolation described by Method 5 linearly transitions from the mar-
ket forward rate to the predetermined long term forward rate, in contrast to
the instant transition of Method 3. Comparing the hedges for the two meth-
ods, we see that the hedge of Method 5 also linearly transitions from exactly
hedging present value of each liability cash flow with the market value of
an asset cash flow, to the “edge case” of Method 3 where the present value
of all liabilities with higher maturity are hedged by a single lower duration
bond.

Since the hedging is not concentrated to a single bond, but to the whole
interval of bonds with maturities between τ and κ, this method would prob-
ably be even less disruptive to the bond market than Method 3.

The total market value of the hedge equals the present value of the liabilities:∫ κ

τ
dA∗t =

∫ κ

τ

κ− t
κ− τ

dL∗t +
1

κ− τ

∫ κ

τ
(L∗T − L∗t ) dt

=

[
κ− t
κ− τ

L∗t

]t=κ
t=τ

+
1

κ− τ

∫ κ

τ
L∗t dt+ L∗T −

1

κ− τ

∫ κ

τ
dL∗t

= L∗T ,

and thus, similarly to Method 3, leverage is not needed.

Since this method is not perfect as Method 3, second order properties of the
hedge are worthwhile to investigate. As shown in Appendix A.2, in contrast
to Method 2, the hedge actually has an excess of convexity compared to
the liabilities. For parallel shifts of the yield curve z between times τ and
κ, regardless of whether these are up or down, the hedge would need to be
decreased. If an insurance company would like to capitalise on this, it could
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— again in contrast to Method 2 — sell options, and this could push down
option prices.

4.6. (Impossibility of) hedging Method 6 (Smith-Wilson). The dis-
crete version of the Smith-Wilson method is clearly perfectly hedgeable since
ζ is linear in D = (Dt1 , . . . , DtN ), and thus any D̄t is too. However, the
continuous case is not even first order hedgeable, and the cause points to
practical problems even with the “perfect” hedge.

Recall (11):

z̄t =
τ

t
zτ +

(
1− τ

t

)
f̄∞ −

1

t
log

(
1 + (f̄∞ − fτ )

1− e−α(t−τ)

α

)
,

for t ∈ E which leads to

δz̄t[z|∆z] =
τ

t
∆zτ + c(t)∆fτ

where

c(t) = c(t; τ, α, fτ , f̄∞) :=
1− e−α(t−τ)

αt

/(
1 + (f̄∞ − fτ )

1− e−α(t−τ)

α

)
.

The appearance of ∆fτ in the expression for the Gâteaux variation implies
the same problems for this method as for Method 4.

The similarity goes further: The parameter α is typically small, and when
α→ 0, c(t)→ (1− τ

t )/(1+(f̄∞−fτ )(t−τ)), and since f̄∞ and fτ are also on
the order of a few percentage points, c(t) ≈ (1− τ

t ), which is the coefficient
of ∆fτ in the Gâteaux variation of Method 4.

An optimal hedge would thus need similar exposure as Method 4 to the
forward rate between the last two maturities, as shown for particular discrete
yield curves by Rebel [4].

In the variant of the Smith-Wilson method where α is chosen to ensure
|f̄κ − f̄∞| ≤ ε, α is itself a function of z with parameters τ , κ and ε. An
implicit expression for α[z] can be derived from (12), but we will not pursue
this here.

The Gâteaux variation is now δz̄t[z|∆z] + dz̄t
dα δα[z|∆z], where δz̄t[z|∆z] is

the variation in the Smith-Wilson method with fixed α, dz̄t
dα the derivative

of the right hand side of (11) with respect to α, and δα[z|∆z] is the first
order variation of α[z].

4.7. Sensitivity with respect to the UFR. If the extrapolation method
changes, the value of the liabilities can change as well. It may not be possible
to hedge against such model changes but knowledge of the sensitivity with
respect to parameters could nevertheless be useful since the supervisory
agency might want to introduce a new method or change the parameters of
the current method.
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The sensitivity with respect to the UFR can easily be calculated for the

particular methods described above. We introduce S := − dL∗T
df̄∞

/
L∗T , which

can be seen as a duration with respect to the UFR.

We continue to assume Lτ = 0.

4.7.1. Method 2. Here d
df̄∞

D̄t = d
df̄∞

e−f̄∞t = −te−f̄∞t = −tD̄t and thus

S =

∫
E t dL

∗
t

L∗T
= Dur[z̄, L],

i.e. the duration of L.

4.7.2. Method 3. Method 3 has d
df̄∞

D̄t = −(t− τ)D̄t and thus

S =

∫
E(t− τ) dL∗t

L∗T
= Dur[z̄, L]− τ,

which is the duration of L minus τ , so its sensitivity is strictly less than
that of Method 2. We call this quantity the excess duration above τ ;

ExcDur[y, C, τ ] :=

∫ T
τ (t− τ) dC∗t [y]

C∗T [y]
.

4.7.3. Method 5. For Method 5,

d

df̄∞
(tz̄t) =

{
(t−τ)2

2(κ−τ) , τ < t ≤ κ,
t− τ+κ

2 , t > κ.

so

d

df̄∞
D̄t =

d

df̄∞
e−tz̄t = − d

df̄∞
(tz̄t) · D̄t =

{
− (t−τ)2

2(κ−τ)D̄t, τ < t ≤ κ,
−
(
t− τ+κ

2

)
D̄t, t > κ.

and

− d

df̄∞
L∗T =

∫ κ

τ

(t− τ)2

2(κ− τ)
dL∗t +

∫ T

κ

(
t− τ + κ

2

)
dL∗t

=
1

2

[ ∫ κ

τ

(t− τ)2

κ− τ
dL∗t︸ ︷︷ ︸

=:I

+

∫ T

κ
(t− τ) dL∗t +

∫ T

κ
(t− κ) dL∗t

]
.

I ≤
∫ κ

τ
(t− τ) dL∗t ⇒

S ≤ ExcDur[z̄, L, τ ] + ExcDur[z̄, L, κ]

2
.

I ≥ 0⇒

S ≥ (κ− τ)L∗κ
2

+ ExcDur[z̄, L, κ].

The sensitivity is thus less than the average of the excess durations above
τ and κ, and we also have a lower bound that might be useful. Since
ExcDur[z̄, L, κ] ≤ ExcDur[z̄, L, τ ], the sensitivity is always lower than that
of Method 3.
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4.7.4. Method 6. For the Smith-Wilson method,

− d

df̄∞
D̄t = (t− τ)D̄t − e−f̄∞(t−τ) 1− e−α(t−τ)

α
Dτ

= (t− τ)D̄t −
1

α

(
D̄

(1)
t − D̄

(α)
t

)
→ (t− τ)D̄t − (t− τ)D̄(0),

as α → 0, where D̄
(α)
t is the discount factor of Method 3 with f̄∞ + α as

UFR, instead of f̄∞. Let z̄(α) and be the corresponding discount curve, with
z̄ still denoting the Smith-Wilson curve. We also have limα→∞

d
df̄∞

D̄t =

−(t− τ)D̄t. Taken altogether,

S = ExcDur[z̄, L, τ ]−
L∗T [z̄(0)]− L∗T [z̄(α)]

αL∗[z̄]

S ≥ ExcDur[z̄, L, τ ]− ExcDur[z̄(0), L, τ ]

S ≤ ExcDur[z̄, L, τ ],

with S approaching the bounds as α tends to 0 or ∞. The Smith-Wilson
method also has a sensitivity that is less than that of Method 3. How it
compares to Method 5 depends on the value of α and the liability cash flow.

5. Conclusions and future research

We have presented a framework that can be used to derive an optimal first
order hedge. In essence we have generalised the common practice of match-
ing key rate durations at a finite number of times to maturity to a continuum
of times to maturity. The advantage with this generalisation is that it allows
for easy comparison between different extrapolation methods.

Among the extrapolation methods to which we have applied the framework,
we find that some methods, including the Smith-Wilson method, need a
hedge with exposure to the forward rate at the last liquid point, which is
troublesome to execute in the market since it necessitates shorting of the
penultimate liquid market point. Other methods, such as constant extrap-
olation of zero coupon yields (Method 2) or a discontinuous transition to a
prespecified ultimate forward rate (Method 3) only requires long exposure
to the last liquid point. However, Method 3 requires less exposure than
Method 2, and would therefore be less dispruptive to the market as a whole.
The method mandated by the SFSA is even less dispruptive to the mar-
ket since it entails a gradual transition from market rates to predetermined
rates. Its downside compared to Method 3 is that it only allows for a first
order hedge whereas Method 3 can be hedged perfectly.

Future research could investigate other extrapolation methods such as the
Nelson-Siegel-Svensson method. The framework could also be used to inves-
tigate the hedgeability of bootstrap methods, i.e. methods for interpolating
liability discount factor from market observations.
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This paper has only focused on instantaneous changed in yield curves. As
time passes, maturities of the hedging instruments decreases from τ (for all
methods except Method 5), and if one wants to hold a bond with maturity
τ , the existing hedge has to be sold and a new with longer maturity bought.
Another area for future studies is how this would affect companies and fixed
income markets.
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Appendix A. Method 5

A.1. Discount yield. Here we derive z̄ for Method 5 (Section 3.5).

For τ < t ≤ κ,

tz̄t =

∫ τ

0
f̄s ds+

∫ t

τ
f̄s ds = τzτ +

∫ t

τ
f̄s ds

= τzτ +
1

κ− τ

∫ t

τ
(κ− s)fs ds+

1

κ− τ

∫ t

τ
(s− τ)f̄∞ ds

=
τκ− τ2

κ− τ
zτ +

κ

κ− τ
(tzt − τzτ )− 1

κ− τ

∫ t

τ
sfs ds+

(t− τ)2

2(κ− τ)
f̄∞

=
κtzt − τ2zτ
κ− τ

− 1

κ− τ

∫ t

τ
sfs ds+

(t− τ)2

2(κ− τ)
f̄∞

=
κtzt − τ2zτ
κ− τ

− 1

κ− τ

[
s2zs

]s=t
s=τ

+
1

κ− τ

∫ t

τ
szs ds+

(t− τ)2

2(κ− τ)
f̄∞

=
κ− t
κ− τ

tzt +
1

κ− τ

∫ t

τ
szs ds+

(t− τ)2

2(κ− τ)
f̄∞.

For t ≥ κ,

tzt =

∫ κ

0
f̄s ds+

∫ t

κ
f̄s ds = κz̄κ +

∫ t

κ
f̄∞ ds = κzκ + (t− κ)f̄∞

=
1

κ− τ

∫ κ

τ
szs ds+

κ− τ
2

f̄∞ + (t− κ)f̄∞

=
1

κ− τ

∫ κ

τ
sz̄(s) ds+

(
t− τ + κ

2

)
f̄∞.

A.2. Second order properties. Let L be a liability cash flow and A the
corresponding first order hedge (at z) of Method 5 (Section 3.5). Let Lτ = 0
in order to focus on the extrapolated part of the yield curve. Assume ∆zt = 1
for τ ≤ t ≤ κ. In this subsection we will show that∫

T
t2(∆zt)

2dA∗t >

∫
E

(
t2(δz̄t[z|∆z])2 − tδ2z̄t[z|∆z]

)
dL∗t .
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It suffices to show this for all lump sum liabilities L∗t = 1{t ≥ σ} with
corresponding hedge A∗t .

To ease notation, let

a(σ) :=

∫
T
t2(∆zt)

2dA∗t ,

l(σ) :=

∫
E

(
t2(δz̄t[z|∆z])2 − tδ2z̄t[z|∆z]

)
dL∗t .

We have for τ < σ ≤ κ

dA∗t =

{
dt
κ−τ , τ < t ≤ σ
κ−σ
κ−τ , t = σ

and for σ > κ,

dA∗t =
dt

κ− τ
, for τ < t ≤ κ.

We have

δz̄t[z|∆z] =

{
κ−t
κ−τ + 1

t
1

κ−τ
∫ t
τ s ds, τ < t ≤ κ,

1
t

1
κ−τ

∫ κ
τ s ds, t > κ,

=

{
κ2−τ2−(κ−t)2

2t(κ−τ) , τ < t ≤ κ,
κ2−τ2

2t(κ−τ) , t > κ,

=

{
κ2−τ2−(κ−t)2

2t(κ−τ) , τ < t ≤ κ,
κ+τ
2t , t > κ,

and δ2z̄[z|∆z] = 0.

Consider first the case σ > κ.

a(σ) =

∫ κ

τ

t2

κ− τ
dt =

κ3 − τ3

3(κ− τ)
=
κ2 + κτ + τ3

3

l(σ) =

(
κ+ τ

2

)2

=
κ2 + 2κτ + τ2

4

⇒ a(σ)− l(σ) =
(κ− τ)2

12
> 0.

Now consider the case τ < σ ≤ κ, and introduce λ := σ−τ
κ−τ .

a(σ) =

∫ σ

τ

t2

κ− τ
dt+ σ2κ− σ

κ− τ

l(σ) =
(κ2 − τ2 − (κ− σ)2)2

4(κ− τ)2
.



HOW TO HEDGE EXTRAPOLATED YIELD CURVES 21

We note that limσ→τ a(σ) = limσ→τ l(σ) = τ2.

a′(σ) = 2σ
κ− σ
κ− τ

= 2σ(1− λ).

l′(σ) =
(κ2 − τ2 − (κ− σ)2)(κ− σ)

(κ− τ)2
= (τ + λκ+ (1− λ)σ)(1− λ)

a′(σ)− l′(σ) = (2σ − τ − λκ− (1− λ)σ)(1− λ)

= (σ − τ − λ(κ− σ))(1− λ)

= (κ− τ)(λ− λ(1− λ))(1− λ) = (κ− τ)λ2(1− λ) > 0.

Since limσ→τ a(σ)− l(σ) = 0 and a′(σ)− l′(σ) > 0, a(σ)− l(σ) > 0 also for
τ < σ ≤ κ, and we are done.

A.3. Sensitivity with respect to UFR.

d

df̄∞
(tz̄t) =

{
(t−τ)2

2(κ−τ) , τ < t ≤ κ,
t− τ+κ

2 , t > κ.

so

d

df̄∞
D̄t =

d

df̄∞
e−tz̄t = − d

df̄∞
(tz̄t) · D̄t =

{
− (t−τ)2

2(κ−τ)D̄t, τ < t ≤ κ,
−
(
t− τ+κ

2

)
D̄t, t > κ.

and

− d

df̄∞
P̄ [z;L] =

∫ κ

τ

(t− τ)2

2(κ− τ)
dL∗t +

∫ T

κ

(
t− τ + κ

2

)
dL∗t

=
1

2

[ ∫ κ

τ

(t− τ)2

κ− τ
dL∗t +

∫ T

κ
(t− τ) dL∗t +

∫ T

κ
(t− κ) dL∗t

]
.

≤ 1

2

[ ∫ κ

τ
(t− τ) dL∗t +

∫ T

τ
(t− τ) dL∗t +

∫ T

κ
(t− κ) dL∗t

]
.

=
1

2

[ ∫ T

τ
(t− τ) dL∗t +

∫ T

κ
(t− κ) dL∗t

]
.

The sensitivity is thus less than the average of the excess durations above τ
and κ.

Appendix B. Method 6

B.1. Continuous version. Andersson and Lindholm [1] have derived the
following representation of the Smith-Wilson discount factors. Essentially,
it shows that a Smith-Wilson discount factor for time to maturity t is the
expected value of a Gaussian process at time t conditioned on its values at
times ti, i = 1, . . . , N , being the observed zero coupon prices for time to
maturities ti, i = 1, . . . , N .

Theorem. Let X be a Gaussian Ornstein-Uhlenbeck process with stochas-
tic differential dXt = −αXt dt + α3/2 dBt and initial value X0 ∼ N(0, α2)

independent of B ; X∗t :=
∫ t

0 Xs ds; and Yt := e−f̄∞t(1 +X∗t ). Then

D̄t = E[Yt|Yti = Dti ; i = 1, . . . , N ].
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Note that the Ornstein-Uhlenbeck process in the theorem is not stationary;

for stationarity X0 should be N(0, α
2

2 ). We have presented the theorem
above in a more streamlined form than Andersson and Lindholm, and we
therefore also provide a proof.

Proof. We have

Xt = X0e
−αt + α3/2

∫ t

τ
e−α(t−s) dBs = e−αt

(
X0 + α3/2

∫ t

τ
eαs dBs

)
Thus, E[Xt] = 0 for all t, which imply E[X∗t ] = 0, and hence E[Yt] = e−f̄∞t.
For s ≤ t,

Cov(Xs, Xt) = e−α(s+t)Cov(eαsXs, e
αtXt)

= e−α(s+t)Cov

(
X0 + α3/2

∫ s

τ
eαu dBu, X0 + α3/2

∫ t

τ
eαu dBu

)
= e−α(s+t)

(
Var(X0) + α3

∫ s

τ
e2αu du

)
= e−α(s+t)

(
α2 +

α2

2
(e2αs − 1)

)
= α2e−αt cosh(αs).

This in turn gives us, with s ≤ t,

Cov(X∗s , X
∗
t ) =

∫∫
0≤u≤s
0≤v≤t

Cov(Xu, Xv) dudv

=

( ∫∫
0≤u≤v≤s

+

∫∫
0≤v≤u≤s

+

∫∫
0≤u≤s≤v≤t

)
Cov(Xu, Xv) dudv

=

(
2

∫∫
0≤u≤v≤s

+

∫∫
0≤u≤s≤v≤t

)
Cov(Xu, Xv) dudv

= 2

∫ s

0
αe−αv

(∫ v

0
α cosh(αu) du

)
dv

+

∫ t

s
αe−αvdv

∫ s

0
α cosh(αu) du

= 2

∫ s

0
αe−αv sinh(αv) dv + (e−αs − e−αt) sinh(αs)

= αs− e−αt sinh(αs).

Finally we can deduce

Cov(Ys, Yt) = e−f̄∞(s+t)Cov(X∗s , X
∗
t ) = W (s, t).
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Let Y := (Yτ , . . . , YtN )′ and D := (Dτ , . . . , DtN )′. Since Y is a Gaussian
process

E[Yt|Y = D] = E[Yt] + Cov(Yt,Y )Cov(Y ,Y )−1(D − E[Y ])

= e−f̄∞t + Cov(Yt,Y )ζ

= e−f̄∞t +
N∑
i=1

Cov(Yt, Yti)ζi

= e−f̄∞t +
N∑
i=1

W (t, ti)ζi,

as desired, where we have identified ζ := (ζ1, . . . , ζN )′ := Cov(Y ,Y )−1(D−
E[Y ]). �

We will use this representation to obtain a continuous version of the method
when the curve is fitted to all zero coupon bonds with time to maturities
between 0 and τ . We define the continuous version of the Smith-Wilson
method thus:

(13) D̄t := E[Yt|Ys = Ds; 0 ≤ s ≤ τ ],

where Yt is the Gaussian process of the theorem. Before we try to simplify
this expression we must learn more about the stochastic processes of the
theorem.

Note that the process X∗ is not Markov whereas the augmented process
(X∗, X) is. For t ≥ s we have

X∗t = X∗s +

∫ t

s
Xu du

= X∗s +

∫ t

s

(
Xse

−α(u−s) + α3/2

∫ u

s
e−α(u−v) dBv

)
du

= X∗s +Xs
1− e−α(t−s)

α
+ α3/2

∫ t

s

∫ u

s
e−α(u−v) dBv du,

and in particular

E[X∗t |X∗s = x∗, Xs = x] = x∗ + x
1− e−α(t−s)

α
.

Also, the sigma-algebra generated by (X∗s , Xs) is a subset of the sigma-
algebra generated by {X∗u; 0 ≤ u ≤ s}, i.e. if we know the whole trajectory
of X∗ up to time s we know both its value and its derivative at time s.
Thus, for t ≥ s,

E[X∗t |X∗u = x∗u; 0 ≤ u ≤ s] = E[X∗t |X∗s = x∗s, Xs = xs] = x∗s+xs
1− e−α(t−s)

α
,

where xs := d
dsx
∗
s.

Let us now return to the definition (13). For 0 ≤ t ≤ τ , we clearly have

D̄t = Dt, i.e. z̄t = zt. Let x∗t be defined by Dt = e−tzt =: e−f̄∞t(1 + x∗t ) and



24 HOW TO HEDGE EXTRAPOLATED YIELD CURVES

let xt := d
dtx
∗
t . We have

x∗t = ef̄∞tDt − 1 = ef̄∞t−
∫ t
0 fs ds − 1,

so

xt = (f̄∞ − ft)ef̄∞tDt.

For t ≥ τ ,

e−tz̄t = Dt = E[Yt|Ys = Ds; 0 ≤ s ≤ τ ]

= E[e−f̄∞t(1 +X∗t )|X∗s = x∗s; 0 ≤ s ≤ τ ]

= e−f̄∞t(1 + E[X∗t |X∗τ = x∗τ , Xτ = xτ ])

= e−f̄∞t
(

1 + x∗τ + xτ
1− e−α(t−τ)

α

)
= e−f̄∞(t−τ)Dτ

(
1 + (f̄∞ − fτ )

1− e−α(t−τ)

α

)
.

B.2. Example of arbitrage for Smith-Wilson. If one fits a Smith-Wilson
curve to one zero coupon bond with yield 0, yields will start negative. In-
deed,

Dt1 = D̄t1

⇐⇒ 1 = e−f̄∞t1 +W (t1, t1)ζ1

= e−f̄∞t1 + e−2f̄∞t1(αt1 − e−αt1 sinh(αt1))ζ1

⇒ ζ1 = ef̄∞t1
ef̄∞t1 − 1

αt1 − e−αt1 sinh(αt1)

D̄t = e−f̄∞t
(

1 +
αt− e−αt1 sinh(αt)

αt1 − e−αt1 sinh(αt1)
(ef̄∞t1 − 1)

)
, 0 ≤ t ≤ t1

⇒ d

dt
D̄t|t=0 = −f̄∞ +

α− αe−αt1
αt1 − e−αt1 sinh(αt1)︸ ︷︷ ︸

> 1
t1

(ef̄∞t1 − 1)︸ ︷︷ ︸
>f̄∞t1

> 0.

Hence D̄t is increasing at t = 0 and since D̄0 = 1 we thus have discount
factors greater than one for small t, which corresponds to negative yields.

In reality — as opposed to the idealised setting of Mathematical Finance —
negative yields only imply an arbitrage if its feasible to hold cash at zero
cost, which is not the case for larger amounts of cash, since they would have
to be put in a guarded vault. That the Smith-Wilson method can produce
negative yields might therefore not be such a big problem in practice.
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