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Abstract

We study so-called immortal branching processes, i.e. branching
processes where each individual upon death is replaced by at least one
new individual. All supercritical branching processes, conditioned to
explode, contain a sub-tree of individuals who have an infinite line of
the descent. Those individuals form an immortal branching process.

By studying the genealogy of an immortal branching process we
can conclude that the distribution of the number of individuals at
any given time, minus the ancestor, has a compound geometric dis-
tribution. The result implies that also the limiting distribution of a
properly scaled supercritical branching process has a compound geo-
metric distribution.

Marginal distributions for the size of a branching process are gen-
erally hard to find, but we find an explicit expression for the marginal
distribution for a class of branching processes that have recently ap-
peared in the theory of coalescent processes and continuous stable
random trees. The limiting distribution can be expressed in terms of
the Fox H-function, and in special cases by the Meijer G-function.
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1 Introduction

A branching process is a Markov process in continuous time. Heuristically
it can be considered as the number of particles in a population where the
particles behave independent of each other, live for exponentially distributed
periods of time and at death give birth to new particles according to some
distribution on the non-negative integers. Usually the population is assumed
to start with one particle. The name branching process is appropriate since
one can describe the evolution of the population by drawing a family tree in
which the lifetime of each particle corresponds to a particular branch.

We shall mainly consider branching processes where each particle give
birth to at least two new particles. We call such processes immortal branching
processes as they can be seen as the number of particles in a population
where no particle dies, but instead repeatedly gives birth to new offspring
after exponential periods of time, independently of each other.

Our main result is that the number of individuals in an immortal branch-
ing processes have compound geometric distributions. As a corollary we ob-
tain that the limiting distribution of properly scaled supercritical branching
processes are compound geometric.

2 Branching processes

We can describe the dynamics of a branching process Z = {Zt}t≥0, where
the number of new particles at each birth has the distribution {pk}k≥0, as
follows (Athreya and Ney [1]): The process starts with Z0 = 1. If the process
is in state i at any time, it continues there for an amount of time which is
exponentially distributed with parameter iµ, where µ is called the intensity
of the process, and then jumps into state j ≥ i − 1 with probability pj−i+1.
It then stays in state j for an exponentially distributed time with parameter
jµ and jumps to state k ≥ j − 1 with probability pk−j+1, etc.

Let

f(s) =
∞∑

k=0

pks
k

be the generating function of the distribution {pk}. A necessary and sufficient
condition for the process described above not to explode in finite time almost
surely, that is P (Zt < ∞) = 1, is that

∫ 1

1−ε

ds

f(s) − s
(1)
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diverges for every ε > 0, see Harris [5]. A sufficient condition for this to hold
is f ′(1) < ∞.

The Kolmogorov backward equation for the generating function F (s, t) =
E[sZt ] is

∂

∂t
F (s, t) = µ(f(F (s, t)) − F (s, t)) (2)

and the Kolmogorov forward equation is

∂

∂t
F (s, t) = µ(f(s) − s)

∂

∂s
F (s, t). (3)

From this equation we see that there is no loss of generality to assume that
p1 = 0 since if Z is a branching process with p1 > 0 and intensity µ, then it is
equally distributed as the branching process Z∗ with intensity µ∗ = µ(1−p1)
and generating function for the offspring

f ∗(s) =
f(s) − p1s

1 − p1

=
∞∑

k=0

p∗ks
k,

where p∗1 = 0 and p∗k = pk/(1− p1) for k = 0, 2, 3 . . . . Thus we can, and will,
assume that p1 = 0.

As t → ∞, the branching process almost surely either dies out, Zt → 0
or explodes, Zt → ∞. What behaviour we will have only depends on the
expected number of offspring of each particle. If m = f ′(1) ≤ 1, then the
process dies out almost surely. If m > 1 then there is a positive probability
1 − q of explosion and the process is called supercritical. It is easily shown
that q is the smallest non-negative root of q = f(q).

In the case of a supercritical branching process we can scale it in time to
obtain a non-trivial random variable in the limit.

Proposition 1 With notation as above, let λ = µ(m − 1), with m > 1.
There exists a non-negative random variable W such that

e−λtZt → W a.s. (4)

as t → ∞. Furthermore W 6≡ 0 if and only if

∞∑

k=2

pkk log k < ∞ (5)

For proof, see [1].
We shall in particular study branching processes with p0 = 0. We call

such processes immortal branching processes. As mentioned above these
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processes can be interpreted as the size of a population of immortal particles
who independently of each other give birth to new particles at exponential
times. We introduce the auxiliary probability distribution {qk}k≥1, where
qk = pk+1, and we interpret this distribution as the distribution of new
offspring at each birth. Let g(s) = f(s)/s be the generating function of {qk}.
The backward equation can thus be written

∂

∂t
F (s, t) = µF (s, t)(g(F (s, t)) − 1). (6)

Since the immortal branching process is nondecreasing we have P (Zt →
∞) = 1.

There is a connection between supercritical processes conditioned on
exploding, and immortal branching processes. Consider the supercritical
branching process Zt, conditioned on exploding. At any given time this pro-
cess will have individuals of two types, those who will have an infinite line of
descent and those who will not. Let Z̃t be the number of the former individ-
uals at time t. Z̃t is an immortal branching process. To understand this we
derive the generating function of the distribution of the offspring f̃(s). Each
child of an individual in Z̃t will have an infinite line of descent with probabil-
ity 1− q independently of each other. Conditional on k children, the number
of children with infinite line of descent thus has a binomial distribution with
parameters k and 1− q, conditioned on being non-zero, since the parent has
an infinite line of descent, and thus at least one child. So conditional on k
children the generating function is

((1 − q)s + q)k − qk

1 − q

The unconditional generating function is therefore

f̃(s) =
n∑

k=1

pk
((1 − q)s + q)k − qk

1 − q

=
f((1 − q)s − q) − f(q)

1 − q

=
f((1 − q)s − q) − q

1 − q

The exact relation between the limiting distribution of proposition 1 for
an exploding branching process Zt and the associated immortal process Z̃t is
given by the following result.

4



Proposition 2 The proportion Z̃t/Zt will, conditional on Zt exploding, con-
verge almost surely to (1−q) as t → ∞, where q is the extinction probability
of the supercritical branching process.

See [1] sections I.12 and III.7 for proof. Because of this result, it is sufficient to
study immortal branching processes for understanding the limiting behaviour
of supercritical branching processes conditioned on exploding.

If Zt is an immortal branching process, then Zt ≥ 1. We will often
consider the distribution of Zt − 1 with generating function F (s, t)/s, since
the results are a little easier to state for the latter process.

3 Compound distributions

We recall some results about compound distributions. All random variables
in this section are assumed to be non-negative. More details can be found in
[8]. A random variable X is compound-N if

X
d
=

N∑

i=1

Yi

where N is a random variable with distribution on N0, the non-negative
integers, and Y1, Y2, . . . are independent and identically distributed. Let
gN(s) = EsN , and LY (θ) = Ee−θY1 be the generating function of N and the
Laplace-Stieltjes transform of the distribution of Y1 respectively. Then the
Laplace-Stieltjes transform of the distribution of X is

LX(θ) = E[e−θX ] = E[E[e−θX |N ]] = E[LY (s)N ] = gN(LY (θ))

If Y1 has a distribution on N0 we can write the generating function gX(s) =
gN(gY (s)). Some examples of discrete compound distributions are the com-
pound Poisson with generating function

F (s) = exp(ν(G(s) − 1)) (7)

and the compound geometric distribution with generating function

F (s) =
1 − p

1 − pH(s)
(8)

Since

1 − p

1 − pH(s)
= exp

(
− log(1 − p)

(
log(1 − pH(s))

log(1 − p)
− 1

))

= exp(− log(1 − p)(gN(H(s)) − 1))),
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where gN(s) is the generating function of the logarithmic distribution, we see
that all compound geometric random variables are also compound Poisson.
Note that if X has generating function F (s) then F̃ (s) = (F (s)−F (0))/(1−
F (0)) is the generating function of X|X > 0, with F̃ (0) = 0. By rescaling ν
and p, respectively, we can always choose G(0) = H(0) = 0 in (7) and (8).

The probability distribution of the random variable X is said to be in-
finitely divisible if there for all positive integers n exist some i.i.d. random

variables X1, . . . , Xn such that X
d
= X1 + · · ·+Xn, where

d
= denotes equality

in distribution. This is equivalent to LX(θ) = LX1(θ)
n, where LX1(θ) is the

Laplace-Stieltjes transform of the distribution of X1.

Example 1 All compound Poisson random variables are infinitely divisible
since F (s) = exp(ν(G(s)− 1)) = exp( ν

n
(G(s)− 1))n, where exp( ν

n
(G(s)− 1))

is a Laplace-Stieltjes transform of a distribution function.

The compound Poisson distributions are important in part due to the fol-
lowing facts, a proof of which can be found in [8].

Proposition 3 All infinitely divisible distributions with F (0) > 0 are com-
pound Poisson, and all infinitely divisible distributions can be obtained as
the weak limit of compound Poisson distributions. Furthermore, all weak
limits of infinitely divisible distributions are infinitely divisible.

Example 2 The negative binomial distribution with parameters α > 0 and
0 < p < 1 has generating function

F (s) =

(
1 − p

1 − ps

)α

=



(

1 − p

1 − ps

)α/n



n

So we see that it is infinitely divisible for all α. Now we can investigate if it
is also compound geometric.

F (s) =
1 − q

1 − qH(s)
,

with H(0) = 0 implies that q = 1 − (1 − p)α and

H(s) =
1 − (1 − ps)α

1 − (1 − p)α
=

1

1 − (1 − p)α

∑

k=1

(−1)k+1

(
α

k

)
(ps)k (9)

and pk = −
(

α
k

)
(−p)k/(1 − (1 − p)α) for k ≥ 1 is a probability distribution if

and only if 0 < α ≤ 1. Thus the negative binomial distribution is compound
geometric if and only if α ≤ 1.
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For non-integer-valued N we define X, a compound-N variable, as follows:
Let Y be infinitely divisible. Thus LY (θ)a is a Laplace-Stieltjes transform
for all a > 0. We define X by its Laplace-Stieltjes transform LX(θ) =
E[LY (θ)N ] = E[exp(N log LY (θ))] = LN(− log LY (θ)). If N is infinitely
divisible, so is X.

Example 3 The compound exponential distribution has Laplace-Stieltjes
transform

LX(θ) =
λ

λ − log LY (θ)
=

1

1 − log LY (θ)1/λ

which we obtain with N ∼ Exp(λ). Note that we can always choose λ = 1
by changing Y . The exponential distribution is infinitely divisible since

LN(θ) =
λ

λ + θ
=



(

λ

λ + θ

)1/n



n

,

and (λ/(λ + θ))1/n is the Laplace-Stieltjes transform of the gamma distribu-
tion with parameters 1

n
and λ, all compound exponential distributions are

infinitely divisible.

The following result is an analogue of proposition 3 for compound exponential
and compound geometric distributions.

Proposition 4 All compound exponential distributions with LX(0) > 0 are
compound geometric and all compound exponential distributions can be ob-
tained as the weak limit of compound geometric distributions. Furthermore,
all weak limits of compound exponential distributions are compound expo-
nential.

The latter two statements can be proved, for example, by using the conti-
nuity theorem for Laplace-Stieltjes transforms. The first statement is easily
checked: Since 0 < P (X = 0) = limθ→∞ LX(θ) = limθ→∞ 1/(1 − log LY (θ)),
we obtain limθ→∞ LY (θ) = P (Y = 0) > 0. Since Y is infinitely divisi-
ble, we have, by proposition 3, that Y is compound Poisson so LY (θ) =
exp(ν(LV (θ) − 1)) for some random variable V . We get

LX(θ) =
1

1 − log LY (θ)
=

1

1 − ν(LV (θ) − 1)
=

1 − ν
1+ν

1 − ν
1+ν

LV (θ)
.

We will also need the following result.

Lemma 1 If X conditional on X > 0 is compound exponential, then X is
compound geometric.
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Proof Let p = P (X > 0). We need to prove that

LX|X>0(θ) =
1

1 − log LY (θ)

for some infinitely divisible Y implies that

LX(θ) =
1 − p′

1 − p′LV (θ)

for some random variable V and some 0 < p′ < 1. P (X = 0) = LX(0) = 1−p
implies that p′ = p

LX(θ) = (1 − p)LX|X=0(θ) + pLX|X>0(θ)

= (1 − p) +
p

1 − log LY (θ)

=
1 − p

1 − p 1/(1−p)
1/(1−p)−log LY (θ)

=
1 − p

1 − pLV (θ)
,

where

LV (θ) =
1/(1 − p)

1/(1 − p) − log LY (θ)

clearly is a Laplace-Stieltjes transform of a probability distribution (a com-
pound exponential one).

Example 4 The gamma distribution with parameters α > 0 and λ > 0 has
Laplace-Stieltjes transform

L(θ) =

(
λ

λ + θ

)α

=



(

λ

λ + θ

)α/n



n

which is infinitely divisible for all α. Let N be negative binomial with pa-
rameters α and e−cλ, where λ > 0 and c > 0, then cN is compound geometric
by example 2 if and only if α ≤ 1.

lim
c→0

LcN(θ) = lim
c→0

(
1 − e−cλ

1 − e−c(λ+θ)

)α

=

(
λ

λ + θ

)α

Thus cN converges in distribution to X and X is by proposition 4 therefore
compound exponential if α ≤ 1. That the gamma distribution is compound
exponential only if α ≤ 1 is shown in example III.5.4 in [8].
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4 Infinite divisibility

Theorem 1 All immortal branching processes are infinitely divisible.

Proof Let {Zt} be an immortal branching process with intensity µ and new
offspring distributed as Y , that is P (Y = k) = qk. Fix a positive integer n.

Let {X(n,1)
t }, . . . , {X (n,n)

t } be n i.i.d. copies of an immortal branching process
with intensity µ/n and new offspring distributed as nY . Consider the process

{Xt} defined by Xt =
∑n

i=1 X
(n,i)
t . Note that the value of {Xt} is divisible by

n at all times. {Xt} jumps from state kn with intensity kn · µ/n = kµ and
when it jumps from state kn it will make a jump with a length distributed

as nY . Clearly {Xt} d
= {nZt}, and thus we can write Zt

d
=
∑n

i=1 Z
(n,i)
t where

Z
(n,i)
t = X

(n,i)
t /n for i = 1, . . . , n. Since n is arbitrary, {Zt} is infinitely di-

visible.

For fixed t, the distribution of Zt−1 is thus compound Poisson. This can
be proved with the Kolmogorov backward equation. From (6) we have

∂

∂t
log

(
F (s, t)

s

)
= µ(g(F (s, t)) − 1)

F (s, t)

s
= exp

(
µ
(∫ t

0
g(F (s, r))dr − t

))

= exp
(
µt
(

1

t

∫ t

0
g(F (s, r))dr − 1

))
(10)

which is the generating function of a compound Poisson distribution since
1
t

∫ t
0 g(F (s, r))dr is a generating function. This distribution has an interesting

probabilistic interpretation. Consider the first individual in the process. He
will give births according to a Poisson process with intensity µ. Thus the
number of births will be Poisson distributed with parameter µt. At each
birth the number of children will have the generating function g(s) and if
a birth occurred at time t − r each child in that litter will be the ancestor
of a number of individuals with generating function F (s, r). Thus the total
contribution of a birth at time t − r to the final size will have generating
function g(F (s, r)). We finally note that each time of birth for the ancestor
will be uniformly distributed over (0, t) if we disregard the order of the times.

Corollary 1 Let {Zt} be a supercritical branching process and W the limit-
ing random variable of proposition 1. Assume (5) holds. Then W conditional
on W > 0 has an infinitely divisible distribution.

Proof Let Ŵ have the distribution of W |W > 0, and let {Z̃t} be the branch-
ing process whose individuals are those individuals of {Zt} that have an infi-
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nite line of descent. As noted earlier, {Z̃t} is an immortal branching process.
Since Z̃t is infinitely divisible for all t, so is e−λtZ̃t, which by proposition 3 im-
plies that W̃ = limt→∞ e−λtZ̃t also is infinitely divisible. Now Ŵ = W̃/(1−q)

where q = P (W = 0), and thus even Ŵ
d
= (W |W > 0) is infinitely divisible.

Remark 1 Earlier proofs of the infinite divisibility of an immortal branching
process and its limiting random variable can be found in [4]. Our proof is
different, and our interpretation of the result also prepares us for proving
further results, such as theorem 2.

5 The Yule process

The easiest example of an immortal branching process is the so called Yule
process, with p2 = 1, or equivalently q1 = 1. The Yule process is one of the
few branching processes whose marginal distribution can be found explicitly.
One way of finding the distribution is by solving the Kolmogorov backward
equation, but a more direct approach provides the joint distribution of the
number of individuals in the process at time t, and their times of birth. This
additional information will be useful later on. Let 0 = τ(0) < τ(1) < . . . be
the times of birth in the Yule process and let (t1, . . . , tn+1) ∈ (0, t)n+1 and
let (t(1), . . . , t(n+1)) be the ordered sample of (t1, . . . , tn+1), and set t(0) = 0.
Recall that τ(k+1) − τ(k) ∼ Exp(kµ) for k ≥ 1.

P (τ(1) ∈ dt(1), . . . , τ(n) ∈ dt(n), τ(n+1) > t) =

=
n∏

k=1

P (τ(k) ∈ dt(k)|τ(k−1) = t(k−1)) · P (τ(n+1) > t|τ(n) = t(n))

=
n∏

k=1

kµe−kµ(t(k)−t(k−1)) · e−(n+1)µ(t−t(n))dt(1) . . . dt(n)

= n!µne−µ((n+1)t−
∑n

k=1
t(k))dt(1) . . . dt(n)

= n!e−µt
n∏

k=1

µe−µ(t−t(k))dt(1) . . . dt(n)

= e−µt(1 − e−µt)nn!
n∏

k=1

µe−µ(t−t(k))

1 − e−µt
dt(1) . . . dt(n) (11)

= e−µt(1 − e−µt)n
n∏

k=1

µe−µ(t−tk)

1 − e−µt
dt1 . . . dtn (12)

Since P (Zt − 1 = n) = P (τ(n) ≤ t < τ(n+1)) we see from (11) or (12) that
Zt − 1 has a geometric distribution with parameter 1 − e−µt. Furthermore,
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we see from (11) that the joint distribution of the times of birth have the
density

n!
n∏

k=1

µe−µ(t−t(k))

1 − e−µt

conditional on Zt − 1 = n. From (12) we see that this is the distribution of
the ordered sample of the i.i.d. random variables τ1, . . . , τn with probability
density

h(r) = P (τk ∈ dr)/dr =
µe−µ(t−r)

1 − e−µt
(13)

We note that τk
d
= t − ε conditional on ε < t for an ε ∼ Exp(µ). The

generating function for the distribution of Zt − 1 is

F (s, t)

s
=

e−µt

1 − (1 − e−µt)s
, (14)

which we also could have found by solving the Kolmogorov backward equa-
tion.

More generally we can also find the distribution when qk = 1 for k ≥ 2.
Here we have

F (s, t)

s
=

(
e−µkt

1 − (1 − e−µkt)sk

)1/k

,

so Zt − 1 has the distribution of a multiple of a negative binomial random
variable. We can also find the distribution of the limiting variable W of
proposition 1. We note that limt→∞ e−λtZt = limt→∞ e−λt(Zt − 1) and that
λ = µ(m − 1) = µk. The Laplace-Stieltjes transform of the distribution W
is given by

LW (θ) = lim
t→∞

E[exp(−θe−µkt(Zt − 1))]

= lim
t→∞

(
e−µkt

1 − (1 − e−µkt) exp(−kθe−µkt)

)1/k

= lim
r→0

(
r

1 − (1 − r)e−rkθ

)1/k

=
(

1

1 + kθ

)1/k

,

so the distribution is gamma, and, in particular, the distribution is exponen-
tial for the limit of the Yule process.
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6 Further distributional properties

The results of the previous section are in concordance with theorem 1 and
corollary 1, but we note that the distributions obtained are not only infinitely
divisible but also compound geometric, and compound exponential in the
limit. This is in fact true for all immortal branching processes.

Theorem 2 All immortal branching processes have compound geometric
distributions.

Proof We make the ansatz (compare with (14))

F (s, t)

s
=

e−µt

1 − (1 − e−µt)H(s, t)
,

where H(s, t) is a generating function. We can rewrite the Kolmogorov back-
ward equation (6) as

∂

∂t
F (s, t) = µF (s, t)(F (s, t)K(s, t) − 1), (15)

where K(s, t) = g(F (s, t))/F (s, t). We note that K(s, t) is a generating
function.

∂

∂t
F (s, t) =

−µse−µt

1 − (1 − e−µt)H(s, t)
+

+
se−µt

(
µe−µtH(s, t) + (1 − e−µt) ∂

∂t
H(s, t)

)

(1 − (1 − e−µt)H(s, t))2

= µF (s, t)

(
F (s, t)

s

(
H(s, t) +

eµt − 1

µ

∂

∂t
H(s, t)

)
− 1

)

Comparing with (15) we get

H(s, t) +
eµt − 1

µ

∂

∂t
H(s, t) = sK(s, t)

µe−µtH(s, t) + (1 − e−µt)
∂

∂t
H(s, t) = µse−µtK(s, t)

∂

∂t
((1 − e−µt)H(s, t)) = µse−µtK(s, t)

H(s, t) =
µs

1 − e−µt

∫ t

0
e−µuK(s, u)du

{r = t − u} = s
∫ t

0
K(s, t − r)h(r)dr,

12
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Figure 1: A realisation of an immortal branching process.

which really is a generating function since K(s, t) is a generating function
and h(r) is a probability distribution.

We can give a nice probabilistic interpretation of this result if we com-
pare the general immortal branching processes with the simple Yule process.
Imagine that the ancestor has a certain title that he passes on to only one
child each time he gives birth. The children themselves also pass on the title,
if they have any, to only one of their children at each birth.

Now we can consider the group of individuals that have the specific title
at any given time t. This group will form a Yule process {Ẑt} with intensity
µ since they give birth to only one child with the title each time they give
birth. Thus Ẑt − 1 has a geometric distribution with parameter 1 − e−µt.

The rest of the population originates from siblings of individuals in the
Yule process {Ẑt}. The number of siblings to an individual who was given the
title have generating function g(s)/s, and each of those siblings will produce
a subtree of its own with total size having generating function F (s, t − r) if
that sibling is born at time r. Thus the size of all subtrees of siblings of a
given titlebearer, born at time r, has generating function K(s, t−r). Finally,
we know from (13) that the unconditional distribution of a time of birth in
the Yule process Ẑt has distribution h(r). See figure 1 for an illustration.

In figure 1, each line corresponds to an individual. The circles, ◦, denote
the times when the ancestor gives birth, thus they form a realisation of a
Poisson process. The ×’s denote the times of births of individuals with the
same title as the ancestor. The times of the ×’s have the distribution h(r).

13



Theorem 2 also provides information about the limiting random variable
W of proposition 1.

Corollary 2 Let {Zt} be a supercritical branching process and W the lim-
iting random variable of proposition 1. Assume (5) holds. Then W has
a compound geometric distribution, and W conditional on W > 0 has a
compound exponential distribution

Proof If we carry through the proof of corollary 1 with the information that
Z̃t is not only infinitely divisible, but also compound geometric, we obtain,
using proposition 4, the result that W |W > 0 has a compound exponential
distribution. By lemma 1, this implies that W has a compound geometric
distribution.

7 Another branching distribution

So far we have only seen quite trivial immortal branching processes with
qk = pk+1 = 1 for some k ≥ 1. There is another class of immortal branching
processes whose marginal distribution can be found explicitly. Let

pk =
(γ + 1)Γ(k − 1 − γ)

k!Γ(1 − γ)
= (γ + 1)

(1 − γ)(2 − γ) · · · (k − 2 − γ)

k!
,

for 0 < γ < 1 and k ≥ 2. For γ = 1 we set p2 = 1, and for γ = 0 we set
pk = 1/(k(k − 1)). The generating function is

f(s) =





(1 − s) (1−s)γ−1
γ

+ s for 0 < γ ≤ 1

(1 − s) log(1 − s) + s for γ = 0.
(16)

We note that γ = 1 is the ordinary Yule case, so this family of branching
processes can be seen as a generalization of the Yule process.

In the case γ = 0 the expected number of offspring at each birth is
infinite, m = f ′(1) = ∞, so proposition 1 does not hold and there is no
limiting random variable W . Nonetheless, the integral in (1) diverges, so
the branching process does not explode in finite time almost surely. Let
us solve the Kolmogorov backward equation when γ = 0. Let F̄ (s, t) =
1 − F (s, t). From (2) and (16) we get ∂

∂t
log F̄ (s, t) = −µ log F̄ (s, t), so

F (s, t) = 1 − exp(e−µtk(s)) for some function k(s). The boundary condition
F (s, 0) = s gives us k(s) = log(1 − s) so

F (s, t) = 1 − (1 − s)e−µt
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Note that this is the distribution of (9) when α = e−µt and p → 1.
A branching process with offspring distribution {pk} with 0 < γ < 1

has appeared in the theory of coalescent processes and continuous (stable)
random trees, [3]. We once again solve the Kolmogorov backward equation:
With the same notation as above and 0 < γ ≤ 1,

∂

∂t
F̄ (s, t) = −µ

γ
F̄ (s, t)

(
F̄ (s, t)γ − 1

)

(
−γF̄ (s, t)−γ−1

1 − F̄ (s, t)−γ

)
∂

∂t
F̄ (s, t) = −µ

log(1 − F̄ (s, t)−γ) = −µt + k(s)

F (s, t) = 1 − 1

(1 − e−µt+k(s))1/γ

where k(s) again is some function of s. Using F (s, 0) = s, we get

F (s, t) = 1 − 1

(1 − e−µt + e−µt(1 − s)−γ)1/γ

We see that this result is in concordance with (14) for γ = 1.
The expected number of new offspring at each birth is m−1 = f ′(1)−1 =

1/γ. The limiting random variable W of (4) has Laplace-Stieltjes transform

LW (θ) = lim
t→∞

E[exp(−θe−µt/γZt)]

= lim
t→∞

F (exp(−θe−µt/γ), t)

= lim
r→0

F (e−θr,−γ

µ
log r)

= lim
r→0

(
1 − 1

(1 − rγ + rγ(1 − e−θr)−γ)1/γ

)

= 1 − lim
r→0

1

(1 − rγ + rγ(θr + o(r2))−γ)1/γ

= 1 − lim
r→0

1

(1 − rγ + (θ + o(r))−γ)1/γ

= 1 − 1

(1 + θ−γ)1/γ

Let Fγ(x) be the distribution function of W , and fγ(x) its probability density.
Then 1 − Fγ(x) has Laplace transform

L(1 − Fγ(x)) =
1

θ
− L(Fγ(x)) =

1

θ
− 1

θ
L(fγ(x))

=
1

(1 + θγ)1/γ
= θ−1(1 + θ−γ)−1/γ =

∞∑

k=0

(
−1/γ

k

)
θ−γk−1
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By inverting this series term by term we find that

1 − Fγ(x) =
∞∑

k=0

(
−1/γ

k

)
xγk

Γ(1 + γk)
=

1

Γ( 1
γ
)

∞∑

k=0

Γ( 1
γ

+ k)

Γ(1 + γk)

(−xγ)k

k!

We note that F1(x) = 1 − e−x as expected. When 0 < γ < 1, this series is
a special case of several different special functions. With the notation of [6],
equation (1.7.8),

1 − Fγ(x) =
1

Γ( 1
γ
)

1Ψ1

[
( 1

γ
, 1);

(1, γ);
− xγ

]
=

1

Γ( 1
γ
)
H1,1

1,2

[
xγ

∣∣∣∣∣
(1 − 1

γ
, 1)

(0, 1) (0, γ)

]
,

where Ψ is a certain generalization of the hypergeometric function and H
is the Fox H-function. For rational values of γ, 1 − Fγ(x) can be expressed
with the Meijer G-function, which has the advantage of being implemented
in software packages such as Mathematica and Maple. For example, if γ = p

q

with p < q being two relatively prime positive integers, then, by equations
(8.3.2.7) and (8.3.2.22) in [7],

1 − F p

q
(x) =

qq/p

Γ( q
p
)
√

p(
√

2π)2q−p−1
Gq,q

q,p+q

((
px

q2

)p ∣∣∣∣∣

1
q
− 1

p
, 2

q
− 1

p
, . . . , 1 − 1

p

0, 1
q
, . . . , q−1

q
, 0, 1

p
, . . . , p−1

p

)

8 Self-decomposability

A random variable X is called self-decomposable if for all 0 < β < 1 there

are random variables X(β) independent of X such that X
d
= βX + X(β).

This is equivalent to LX(θ) = LX(βθ)Lβ(θ), with LX(θ) and Lβ(θ) being the
Laplace-Stieltjes transforms of the distributions of X and X(β) respectively.
It is known that the limiting random variable W in (4) conditioned on W > 0
is self-decomposable, see [2]. Self-decomposability implies infinite divisibility
but not that a distribution is compound exponential, and vice versa there
are compound exponential distributions that are not self-decomposable.

Example 5 The gamma distribution with parameters α and λ is self-decom-
posable since

LX(θ) =

(
λ

λ + θ

)α

=

(
λ

λ + βθ

)α (
λ + βθ

λ + θ

)α

= LX(βθ)


 β

1 − (1 − β) λ/β
λ/β+θ




α

= LX(βθ)Lβ(θ),
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with Lβ(θ) = gN(LY (θ)), where N is negative binomial with parameters α
and 1− β, and Y is exponential with parameter λ/β. According to example
4, the gamma distribution is compound exponential if and only if α ≤ 1, so
for α > 1 we have an example of a self-decomposable distribution which is
not compound exponential.

Example 6 Let X be compound exponential with Laplace-Stieltjes trans-
form LX(θ) = 1/(1 + log(1 + θ)). Consider Lβ(θ) = LX(θ)/LX(βθ) =
(1 + log(1 + βθ))/(1 + log(1 + θ)) with 0 < β < 1. If Lβ(θ) were a Laplace-
Stieltjes transform of a (positive) random variable X(β) it would be decreasing
in θ. But 1 = Lβ(0) ≥ Lβ(θ) → 1 as θ → ∞, so Lβ(θ) is not decreasing
for all values of θ. Therefore, X is a compound exponential random variable
that is not self-decomposable.

Since we have shown that immortal branching processes are infinitely
divisible and compound geometric even before the limit, one might wonder
if the distribution also is self-decomposable for finite t or at least easily is
shown to be self-decomposable in the limit.

First we note that no discrete non-trivial random variable X can be self-
decomposable since βX is not integer-valued. There is a property similar to
self-decomposability that is called discrete self-decomposability that at first
sight might seem appropriate to investigate. Define the binomial thinning
operator �, by β � n ∼ Bin(n, β). A random variable with distribution on
N0 is called discrete self-decomposable if for all 0 < β < 1 there are random

variables X(β) independent of X such that X
d
= β � X + X(β).

Branching processes are in general not discretely self-decomposable for
finite t:

Example 7 Consider the branching process with q2 = 1. At each birth, the
number of individuals increases with two, so Zt − 1 is even, but β � (Zt − 1)
has both positive probability of being odd and of being even, so Zt − 1 is
therefore not discretely self-decomposable.
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