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Abstract

Bertoin and Le Gall [1] introduced a certain probability measure valued Markov process that
describes the evolution of a population, such that a sample from this population would exhibit a
genealogy given by the so-called Λ-coalescent, or coalescent with multiple collisions, introduced
independently by Pitman [9] and Sagitov [10]. We show how this process can be extended to
the case where lineages can experience mutations. Regenerative compositions enter naturally
into this model, which is somewhat surprising, considering a negative result by Möhle [7]

1 Introduction

A coalescent with multiple collisions, or Λ-coalescent, Π = (Πt)t≥0, is a Markov process on
the space P(N), the partitions of N = {1, 2, . . .}, such that for all n, Π(n), the restriction of

Π to [n] = {1, . . . , n}, is a Markov process with the following transitions: If Π
(n)
t has b blocks,

then any collection of k blocks, coalesce into one block at rate λb,k for 2 ≤ k ≤ b ≤ n. Note
that the rate only depends on the number of blocks, not their sizes. By considering Π(n) and
Π(n+1) one realizes that λb,k = λb+1,k + λb+1,k+1. From this it follows, see [9], that

λb,k =

∫

[0,1]

xk−2(1 − x)b−kΛ(dx) for 2 ≤ k ≤ b,

for some finite measure Λ on [0, 1].
Λ-coalescents were introduced independently by Pitman [9] and Sagitov [10] as a generalization
of the Kingman coalescent [4]. All these processes can arise as limiting processes when studying
the genealogy for a finite sample of individuals from a haploid (one parent per child) population,
see [11, Proposition 7].
Consider a large population with constant size N for all generations, which are furthermore
non-overlapping. A sample of n individuals, labeled by [n], form a partition by grouping
together those who have had a common ancestor by generation t backwards in time, i.e.
those whose lineages have coalesced into a common lineage by that time. The Λ-coalescent,
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restricted to [n], is a possible limiting process when N → ∞, and time and the distribution of
the number of children of each individual are scaled properly. Furthermore, it is possible to
obtain a coalescent with simultaneous multiple collisions, but we will in this paper not consider
such so-called Ξ-coalescents, see [8, 11] for more details.

The Kingman coalescent is a Λ-coalescent with Λ = δ0, i.e. with the only type of transition
being a merger of two blocks at a time. This process is the natural limiting process for
many population models, roughly speaking those models where the number of children for
each individual always is small compared to the total population size as the size tends to
infinity. The probability of more than two lineages in the sample coalescing at the same time
is then negligible in the limit. A Λ-coalescent with Λ 6= δ0 corresponds to a population where
occasionally single individuals have offspring constituting a positive fraction of the entire next
generation as the population size tends to infinity. If several of the lineages in your sample
belong to that fraction, they will coalesce into a single lineage at that moment.

The main result of this paper is a description of the dynamics of the whole population when
all lineages experience neutral mutations, i.e. mutations that do not influence the chance
of survival. Earlier studies have only described how introducing mutations influences the
dynamics of the genealogy of a sample from the population.

We will proceed as follows. First, in Section 2, we will acquaint ourselves with useful represen-
tations of random partitions and coalescent processes. Here we will also find a description of
a population model such that the genealogy of a sample from this population is given by the
Λ-coalescent. When we introduce mutations in the population, an obvious way of partition-
ing a sample of individuals is by their common genotypes. In Section 3, a general recursion
formula is given for the distribution of the family sizes in the sample. Section 4 might at
first be seen as a detour into the theory of regenerative composition structures, i.e. a special
kind of ordered partitions, especially since it is known that our type of partitions can never
appear from these regenerative composition structures if one simply disregards the order in
the composition. This theory, however, is used in the last Section 5, in which we present a
model for the whole population, and not just a sample from it, when all lineages experience
neutral mutations, such that the distribution of a sample from this population is in accordance
with the result in Section 3.

2 Paintboxes and a population process

In this section we will see how one can use probability measures to construct random partitions
of N. Let p be a probability measure with atoms of sizes b = (bi)i∈N in non-increasing order.
Let (Ri)i∈N be an i.i.d. sample from p and define the equivalence relation ∼p on N by i ∼p j
if Ri = Rj . Then the equivalence classes of ∼p form the sought partition of N.

A more common way of using such a sequence b, is to partition [0, 1] into intervals (Ii)i∈N0

with lengths (bi)i∈N0
, where b0 := 1 −

∑

i bi, and let the equivalence relation ∼b on N be
defined by i ∼b j if Vi, Vj ∈ Ik for some k ≥ 1, where (Vi)i∈N are i.i.d. U(0, 1), and let i such
that Vi ∈ I0 be in equivalence classes of their own. In general, one can use a random measure
π, and carry out the construction pointwise, given π = p. This is equivalent to using atoms of
random sizes β = (βi)i∈N, and the construction is called a paintbox construction, see [4].

A random partition of N is called exchangeable if its restriction to [n] has a distribution that
is invariant under permutations of the labels [n] for all n ∈ N. For example, if (Πt)t≥0 is a
Λ-coalescent, then Πt is exchangeable for all t. Kingman has shown, see e.g. [4], that any
exchangeable random partition of N can be obtained from a paintbox construction, e.g. with
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β = (βi)i∈N being the almost sure limit of (li(n)/n)i∈N, where li(n) is the size of the ith largest
block of the partition restricted to [n]. Here, and elsewhere in this paper, we understand limits
to be taken as n → ∞, unless otherwise indicated.
If one enumerates the blocks of Πs = {As

1, A
s
2, . . . }, and for t > s considers the blocks of

Πt = {At
1, A

t
2, . . . }, then each At

i = ∪j∈C
s,t

i
As

j for some Cs,t
i . It is a property of coalescent

processes that the partition Πs,t = {Cs,t
1 , Cs,t

2 , . . . } is exchangeable and distributed as Πt−s.
Bertoin and Le Gall [1] showed that there exists a collection (πs,t)s≤t of random probability
measures on [0, 1] such that ∼πs,t

corresponds to Πs,t for all s < t. For fixed s and increasing
t this collection describes the genealogy of the population further and further backwards in
time. The random partition Πs,t should be interpreted as describing how the lineages present
in the population at time s coalesce into lineages at time t, and it thus has a meaning even
with negative arguments s < t, since this corresponds to future events in the population
relative to time zero. We shall study, and later extend, the dynamics of the Markov process
ρ = (ρt)t≥0 := (π−t,0)t≥0, which describes the evolution of the population forwards in time.
Heuristically, ρt(dr) represents the descendants at time t of the fraction dr of the population
at time zero.
If Λ(0) = 0, then the dynamics of ρ can be described by a measure ν(dx) := Λ(dx)/x2. Let
{(τi, Xi, Ui)}i∈N be a Poisson process on R×(0, 1]×(0, 1) with intensity measure dt⊗ν(dx)⊗du.
Assume for the moment |ν| := ν((0, 1]) < ∞. We will use this Poisson point process to
construct the process ρ. We let (τi)i∈N, which by the assumption is a homogeneous Poisson
process with rate |ν|, be the jump times of ρ. At a time τi, the conditional law of ρτi

, given
ρτi−, is

(1 − Xi)ρτi− + XiδRi
, (1)

where Xi has distribution ν/|ν| and Ri is a sample from ρτi−, picked by the inverse transfor-
mation method: Ri := inf(r : ρτi−([0, r]) > Ui). Between jumps, ρ remains constant.
The heuristic interpretation of these dynamics is that a person is chosen from the population
just before the jump at time τi, and she is identified with her family labeled Ri. At the time
of the jump, she begets offspring of proportion Xi of the total population, and we say that
the litter i, born at τi, has size Xi. The rest of the population must thus be scaled down by a
factor 1 − Xi and the atom corresponding to her family is increased with mass Xi.
Bertoin and Le Gall [1, Corollary 2] showed the following.

Proposition 1 If (νn)n∈N is a sequence of finite measures, with Λn(dx) = x2νn(dx) converg-

ing weakly to a finite measure Λ on [0, 1], then the sequence of processes (ρn)n∈N, where each

ρn is governed by the respective νn, converges in distribution, in the sense of weak convergence

of finite-dimensional marginals, to the process ρ corresponding to the collection (πs,t)s≤t as-

sociated with the limiting Λ-coalescent. If Λ(0) = Λ(1) = 0 and
∫

(0,1) xν(dx) < ∞, then the

convergence can be strengthened to almost sure convergence.

Thus, ρ has a meaning even in the case |ν| = ∞, and in particular, the description of ρ above,
for the case |ν| < ∞, can be extended to the case

∫

(0,1)
xν(dx) < ∞.

3 Mutations in the sample

In a population genetics setting, it is natural to introduce mutations along the lineages and
ask how the individuals of your sample are partitioned into different families according to
their genotype. We assume that mutations always give rise to new types of individuals never
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Figure 1: A family tree for a sample of 7 individuals. t0 is present time. Chronological time
increases to the right, whereas the time of the coalescent increases to the left. Coalescence of
lineages occurs at times c1, . . . , c4. Mutations are denoted by × and occur at times m1, m2

and m3. The partition of this sample into families is
{

{1, 2, 3, 5, 6}, {4}, {7}
}

.

seen before in the population (the so-called infinite alleles model), and that when tracing the
lineages backwards in time, there is a constant intensity µ per lineage for a mutation to occur,
i.e. if we draw the family tree of the sample, the mutations constitute a homogeneous Poisson
process with intensity µ along each branch, see Figure 1 for an example.

A quantity of interest is q(a), a = (a1, a2, . . . ), the probability of observing a partition with
ai families of size i. When we trace the genealogy of the lineages backwards in time, the
probability of a mutation to occur first is µn/(µn + λn), and the probability of a collision of k
lineages happening first is

(

n
k

)

λn,k/(µn+λn), for k = 2, . . . , n. By the Markov property of the
Λ-coalescent, we can condition on the type of event that happens first, and obtain a recursion
for q(a). Möhle [6] was the first to provide this recursion for Λ- (and even Ξ-) coalescents. Let
ek be the kth unit vector in R∞ and λn :=

∑n
k=2 λn,k.

Proposition 2 (Möhle’s recursion [6]) q(e1) = 1, and

q(a) =
µn

µn + λn

q(a − e1) +
n

∑

k=2

(

n
k

)

λn,k

µn + λn

n−k+1
∑

j=1

j(aj + 1)

n − k + 1
q(a + ej − ej+k−1), (2)

for n =
∑

i iai > 1, where q(a) = 0 if any ai < 0.

There are no known closed formulas solving (2) for general Λ, except for the cases Λ = δ0

(Kingman’s coalescent) and Λ = δ1.

The parts of this formula should be interpreted as follows. If a mutation occurs first, the rest
of the sample is described by a − e1. If a merger of k lineages occurs first, and it occurs in
a family represented by j + k − 1 lineages, then after that merger, the sample will consist
of n − k + 1 lineages and be described by a + ej − ej+k−1. In particular, there will now be
aj + 1 families of size j. The probability that the merger of k lineages affected a family of
size j + k − 1 is given by j(aj + 1)/(n− k + 1), since the merger could have resulted in any of
the j lineages in any of the aj + 1 families with equal probability by the exchangeability. We
refer to Möhle [6] and Dong et al. [2] for more detailed discussions. The latter paper extends
coalescent processes, so that their blocks become frozen when they encounter a mutation, and
then do not partake in the further evolution of the process. With frozen blocks enclosed by 〈
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Figure 2: An illustration of sampling with V1, . . . , V7 from S resulting in (n1, n2, n3, n4) =
(1, 1, 2, 3), and how to construct S(z) from S.

and 〉, the path of this process, realized as in Figure 1, would be

{

{1}, . . . , {7}
} m1→

{

{1}, . . . , {6}, 〈7〉
} c1→

{

{1}, {2, 5}, {3}, {4}, {6}, 〈7〉
}

m2→
{

{1}, {2, 5}, {3}, 〈4〉, {6}, 〈7〉
} c2→

{

{1, 3, 6}, {2, 5}, 〈4〉, 〈7〉
}

c4→
{

{1, 2, 3, 5, 6}, 〈4〉, 〈7〉
} m3→

{

〈1, 2, 3, 5, 6〉, 〈4〉, 〈7〉
}

.

The partition into families is obtained when all blocks are frozen.

4 Regenerative composition structures

Most results in this section are from Gnedin and Pitman [3]. A partition of n ∈ N is an
unordered collection of natural numbers {n1, . . . , nk} such that n1 + · · ·+ nk = n. An ordered
partition is called a composition, and we say that n1, . . . , nk are its parts. A composition
structure C is a sequence (Cn)n∈N of random compositions of n such that if n balls are
distributed into an ordered series of boxes according to Cn, then Cn−1 is obtained by discarding
one of the balls picked uniformly at random, and deleting an empty box in case one is created.
A composition structure is regenerative if for all n ≥ m ≥ 1, given that the first part is m, the
remaining composition of n − m is distributed as Cn−m.
We will see that one can obtain regenerative compositions with the appropriate sampling
procedure. Let (Vi)i∈N be i.i.d. U(0, 1) and let (Vin)i∈[n] be the ordered sample of (Vi)i∈[n],
meaning V1n ≤ · · · ≤ Vnn. Given a closed set S ⊆ [0, 1], we can construct a composition
Cn as follows. Partition [n] into blocks of consecutive integers by letting j and j + 1 be in
different blocks if [Vjn, Vj+1,n]∩S 6= ∅. Let the parts of Cn be given by the sizes of the blocks
in increasing order of their elements, see Figure 2. We will in general also allow a random
closed set S ⊆ [0, 1], independent of (Vi)i∈N, where the construction is carried out given the
realization S = S. We then say that Cn is obtained by sampling from S.
For any closed set S ⊆ [0, 1] and z ∈ [0, 1), define D(S, z) := inf S ∩ (z, 1], where we let
inf ∅ := 1. For S and z such that D(S, z) < 1, define

S(z) :=

{

x − D(S, z)

1 − D(S, z)
: x ∈ S ∩ [D(S, z), 1]

}

This is the part of S strictly to the right of D(S, z) scaled back to [0, 1], see Figure 2. We say
that a random closed set S ⊆ [0, 1] is multiplicatively regenerative if for each z ∈ [0, 1), given
D(S, z) < 1, the set S(z) is independent of [0, D(S, z)] ∩ S, and has the same distribution as
S.
Let {(τi, Xi)}i∈N be a Poisson process on R+ × (0, 1) with intensity measure dt ⊗ ν(dx) for
a measure ν with

∫

(0,1) xν(dx) < ∞, and let µ ≥ 0 be a constant. The notation here is
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intensionally similar to the one in the previous sections of this paper, but we assume for the
moment no relation to these. We call the process Z = (Zt)t≥0 a multiplicative subordinator

with characteristics (µ, ν) if

Zt := 1 − e−µt
∏

i:τi≤t

(1 − Xi),

for all t ≥ 0. The name is justified by the property that (1 − Zt′)/(1 − Zt) has the same
distribution as 1 − Zt′−t and is independent of (Zu)0≤u≤t for t′ > t. We obtain an ordinary
subordinator by the transformation Zt 7→ − log(1 − Zt).

Remark 1 We need the moment condition on ν above to obtain a non-trivial process Z, since
if

∫

(0,1)
xν(dx) = ∞, then

∑

i:τi≤t log(1 − Xi) = −∞ almost surely for t > 0, see Campbell’s

Theorem in [5, p. 28], and thus
∏

i:τi≤t(1 − Xi) = 0 for all t > 0.

Let R be the closed range of the multiplicative subordinator Z. Proposition 3 collects some
results of [3].

Proposition 3 The closed range R of Z is multiplicatively regenerative, and conversely, all

multiplicatively regenerative sets can be seen as the range of some multiplicative subordinator,

whose characteristics are determined up to a positive constant. Sampling from R produces

a regenerative composition structure C , and all regenerative composition structures can be

obtained by sampling from a regenerative set.

Since we have these relations between regenerative composition structures, multiplicative sub-
ordinators, and multiplicatively regenerative sets, we also say that (µ, ν) are the characteristics
of the regenerative composition structure C of the proposition. In particular, the probability
of the first part having size m in Cn, is q(n : m) = Φ(n : m)/Φ(n), where

Φ(n : m) = µn1(m = 1) +

(

n

m

)
∫ 1

0

xm(1 − x)n−mν(dx), (3)

and Φ(n) =
∑n

m=1 Φ(n : m). We see that the characteristics (µ, ν) and (cµ, cν), c > 0, produce
the same regenerative composition structure. We will need more detailed results about the
first part of a regenerative composition Cn, n ≥ 2. It can have size one if either V1n ∈ R, or
V1n /∈ R and R∩ [V1n, V2n] 6= ∅. The expressions for the following probabilities are taken from
the proof of Theorem 5.2 on p. 457 of [3].

q(n : 1)′ := P (V1n ∈ R) =
µn

Φ(n)
, (4)

q(n : 1)′′ := P (V1n /∈ R, [V1n, V2n] ∩R 6= ∅) =
n

Φ(n)

∫ 1

0

x(1 − x)n−1ν(dx). (5)

Möhle [7, Theorem 3.1] showed

Proposition 4 The recursion (2) cannot be solved by a partition obtained by disregarding the

order of the parts of a regenerative composition structure, unless Λ has all its mass in either

0 or 1.
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5 Mutations in the population

For a population without mutations, ρt → δe in distribution as t → ∞, where e has distribution
U [0, 1] and is called the primitive Eve [1, Proposition 1 and Definition 4], so that all of the
population belongs to the primitive Eve’s family. This is a sort of genetic drift where, by chance,
some genotype eventually makes up the whole population. When mutations are possible, no
such absorbing state exists since new mutations appear, and we can hope for the existence of
a non-trivial stationary distribution of ρ.
We shall now investigate what happens with ρ, describing the evolution of the population
forwards in time, when individual lineages mutate at constant rate µ. The heuristic inter-
pretation will be that a constant mutation rate µ erodes all families at the same rate. The
mutated lineages are unique and each one only takes up an infinitesimal fraction of the whole
population until they possibly increase their size to a positive fraction of the population by
a jump. They could also experience yet another mutation but that does not matter in this
setting since we are not interested in the actual genotypes; all that matters is that they differ.
In the case with finite intensity of births of new litters, the jump mechanism will be the same
as in (1), but for t between two consecutive jump times, say σ and τ , we will have

ρt = e−µ(t−σ)ρσ + (1 − e−µ(t−σ))λ, (6)

where λ is the Lebesgue measure on [0, 1].
To make this rigorous, we will proceed in several steps. We will first study the litters without
any genealogical relationships. Since a family consists of litters, claiming that it erodes at a
constant rate, implies that its litters also must do so at the same rate. We will describe the
composition of a population consisting of eroding litters and “mutants”, or singletons, with a
probability measure on [0,∞). The process describing the evolution of the population, still
disregarding possible family ties between litters, will then be shown to converge to a stationary
distribution. After that, we will impose a genealogy on the litters, meaning a partial order
describing who is a descendant of whom. This will enable us to define ρ as we want. Finally,
Theorem 2 validates our construction by stating that a sample from this population would
have the same sampling distribution as from a Λ-coalescent with mutations.
We will for the rest of this section assume that Λ(0) = Λ(1) = 0 and

∫

(0,1) x−1Λ(dx) < ∞. We

let ν(dx) := Λ(dx)/x2, as in Section 2, and thus
∫

(0,1) xν(dx) < ∞. Let {(τi, Xi, Ui)}i∈N be

a Poisson process on R × (0, 1) × (0, 1) with intensity measure dt ⊗ ν(dx) ⊗ du, whose points
denote the times of birth, and the sizes of the litters born in the population, and auxiliary
random variables for each litter to be used later. The litters are indexed in decreasing order of
size, and in case of ties in decreasing order of the auxiliary random variables. Thus i < j need
not imply τi < τj . The dynamics in (1), when there are no mutations, imply that the fraction
of the population at time t that belongs to a litter i, born at time τi ≤ t, with original size Xi,
is given by

Xi

∏

j:τi<τj≤t

(1 − Xj),

since the size of the litter must be scaled down at the birth of each subsequent litter. If the
size of each litter, and thus also the size of each family, is furthermore eroded with a constant
rate µ, the size at time t of litter i becomes

Xi(t) := Xie
−µ(t−τi)

∏

j:τi<τj≤t

(1 − Xj)1(τi ≤ t),
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where 1(·) is the indicator function. We can describe the sizes and the ages of the litters at
time t with the random probability measure ρ̃t on R+, defined by its distribution function

F (s : ρ̃t) := 1 − e−µs
∏

i:t−s≤τi≤t

(1 − Xi),

for s ≥ 0 and F (s : ρ̃t) := 0 for s < 0. The atoms of ρ̃t now have sizes Xi(t) and positions
t − τi, provided τi ≤ t, corresponding to the current sizes and ages at time t of the litters.
By the homogeneity of the Poisson process, ρ̃ = (ρ̃t)t∈R is a stationary process. Since the
process depends on all litters born before time t, it does not describe the composition of the
population into litters if we want the process to start at time 0 with no litters. In that case
we must use a cut-off, so that there are no litters older than t at time t. This is described by
the process ρ̃′ = (ρ̃′t)t≥0 of random probability measures on R+, with distribution functions

F (s : ρ̃′t) := 1 − e−µs
∏

i:max(t−s,0)≤τi≤t

(1 − Xi),

for s ≥ 0 and F (s : ρ̃′t) := 0 for s < 0, so that ρ̃′0(ds) = µe−µsds. This process is not stationary,
but it converges in distribution to ρ̃0.

Lemma 1 ρ̃′t
d
→ ρ̃0, as t → ∞.

Proof Define ρ̃′′t , t ≥ 0, by its distribution function

F (s : ρ̃′′t ) := 1 − e−µs
∏

i:max(−s,−t)≤τi≤0

(1 − Xi),

for s ≥ 0 and F (s : ρ̃′′t ) := 0 for s < 0. By the homogeneity of the Poisson process, F (s : ρ̃′t)
d
=

F (s : ρ̃′′t ), or, equivalently, ρ̃′t
d
= ρ̃′′t , for all fixed t ≥ 0. Note that F (s : ρ̃0) = F (s : ρ̃′′t ) for

s ≤ t. For s > t, we have

0 ≤ F (s : ρ̃0) − F (s : ρ̃′′t ) ≤ e−µs < e−µt → 0,

as t → ∞. Thus, the distance between ρ̃′′t and ρ̃0 in the total variation metric, supA∈B(R) |ρ̃
′′
t (A)−

ρ̃0(A)| < e−µt → 0, as t → ∞. (Here B(R) are the Borel sets of R.) This implies ρ̃′t
d
→ ρ̃0. �

Thus ρ̃ and ρ̃′ have the same limiting distribution, and we choose to work with the former
process, since it is stationary.

Theorem 1 The composition of a sample from ρ̃0, according to litters of increasing age, is

regenerative with characteristics (µ, ν).

Proof By construction, F (s : ρ̃0) is a multiplicative subordinator with characteristics (µ, ν),
and the order of the parts of the regenerative composition obtained by sampling from the
closure of its range corresponds to increasing age of the litters. �

In the light of Proposition 4, the theorem might be a bit surprising. What we really want is
not the composition into litters, but the partition into families, so we must somehow collect
different litters into families. This will destroy the regenerative property of the composition
into litters.
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Rt

0 1Ii,t Ij,t

6

Ij,τi−

6
Ui

Rτi−

R0
1 2 3 4 5

66 66 6

Figure 3: Top An illustration of j ≺′ i. The arrow indicates how Ui ∈ Ij,τi−.
Bottom An example of how the litters 1, . . . , 5 (an arbitrary enumeration) can be related to
each other. Here 5 ≺′ 4, 5 ≺′ 3 ≺′ 2 and both 1 and 5 are roots.

We will now define how the litters are related to each other. We do this by sampling from ρ̃.
Let Rt be the closed range of F (s : ρ̃t). The complement of Rt in [0, 1] is a union of disjoint
open intervals, ∪iIi,t, with

Ii,t := (F ((t − τi)− : ρ̃t), F (t − τi : ρ̃t)),

so that interval Ii,t corresponds to litter i. Note that litters i with τi > t, i.e. litters not yet

born at time t, have Ii,t = ∅. We also have R
(u)
t = Rτi− if u ∈ Ii,t, see Figure 3.

We say that litter i originates from litter j if Ui ∈ Ij,τi−, and in that case we write j ≺′ i, see
Figure 3. There is for each i at most one j such that j ≺′ i. There is no such j if Ui ∈ Rτi−.
Let I0 := {i : ∄j, j ≺′ i}. This is the set of litters which are not descendants from any
other litter, but descendants from singletons, thus their genotypes are unique at their times
of births. We call these litters roots. We define ≺ by j ≺ i if there exist k1, . . . , kn such that
j ≺′ k1 ≺′ · · · ≺′ kn = i. The sequence k1, . . . , kn is then unique. Furthermore, we set j � i if
j ≺ i or i = j. There can be at most one root j for each i such that j � i, and in that case we
write α(i) = j, and say that j is the root of i. What is not immediately obvious is that each
i ∈ N has a root (almost surely).

Lemma 2 Each i ∈ N has a root almost surely.

Proof Define recursively In := {i : ∃j ∈ In−1, j ≺′ i}, for n ≥ 1, and let the height of a fixed
litter i be defined by Hi := n if i ∈ In and Hi = ∞ if ∄n ∈ N : i ∈ In. We need to show that
Hi is finite almost surely.
The height Hi is a function of {(τk, Xk, Uk)}k:τk<τi

. The event {i ≺′ l} is likewise measur-
able with respect to {(τk, Xk, Uk)}k:τi≤τk<τl

. Thus the events {Hi = h} and {i ≺′ l} are
independent for all i, l : τi < τl, and h ∈ N ∪ {∞}.
Let p̄h := P (Hi ≥ h) for h ≥ 0. Obviously p̄0 = 1. Assume h ≥ 1. Note that {Hi ≥ 1} =
{Ui /∈ Rτi−} = ∪j:τj<τi

{j ≺′ i}, so

p̄h =
∑

j:τj<τi

P (Hi ≥ h, j ≺′ i) =
∑

j:τj<τi

P (Hj ≥ h − 1, j ≺′ i)

=
∑

j:τj<τi

P (Hj ≥ h − 1)P (j ≺′ i) =
∑

j:τj<τi

p̄h−1P (j ≺′ i)

= p̄h−1P (Ui /∈ Rτi−) = p̄h−1(1 − q(1 : 1)′).



18 Electronic Communications in Probability

In the last equality we used (4) with n = 1. Thus p̄h = (1 − q(1 : 1)′)h and therefore Hi has a
geometric distribution with parameter q(1 : 1)′ and is finite almost surely. �

By our interpretation of the relation � as a genealogical relation, we should let all litters with
the same root have the same genotype. We define Ri, the genotype of litter i, by Ri := Uα(i).
Now we can finally define ρ = (ρt)t∈R.

ρt :=
∑

i

Xi(t)δRi
+

(

1 −
∑

i

Xi(t)
)

λ.

Note that this is a stationary version, and ρ0 6≡ λ. In the finite intensity case, ρ behaves as in
(6) between jumps, just as we wanted, and at the time of a jump, the new litter chooses its
genotype from the population at the moment before the jump, just as in (1).
At a fixed time t, ρt represents the population in the sense that a sample from the population
will have a partition with distribution as given by ∼ρt

. An i.i.d. sample (ri)i∈[n] from a
realization of ρt can be interpreted as the genotypes of individuals i = 1, . . . , n in a sample
from the population a time t. The value of an r with distribution ρt can either be one of the
R1, . . . , or, with probability 1 −

∑

i Xi(t), it is uniformly drawn from [0, 1].
The justification for the construction is given by Theorem 2.

Theorem 2 The partition of a sample from ρ0 according to families has the same distribution

as the partition according to genotypes of a sample from a Λ-coalescent with mutations, i.e. its

distribution is given by the recursion (2).

Proof We assume the sample size n ≥ 2 and that the sample is created by first sampling
from R0 with the i.i.d. uniform random variables (Vi)i∈[n], and then collecting the litters into
families. Note that (Vin)i=j...n, when disregarding their order, are i.i.d. U(v, 1), given Vjn > v.
We will use the notation from Section 4. Consider the realization V1n = v. Three possibilities
exist.

1. v ∈ R0. This happens with probability q(n : 1)′. Then 1 is a singleton and is thus in a
family of its own.

2. V1n /∈ R0 and [V1n, V2n] ∩ R0 6= ∅. This happens with probability q(n : 1)′′. Then 1 is
in a litter of its own, say litter k, and what family litter k belongs to is determined by a

uniform random variable Uk on R
(v)
0 = Rτk−.

3. [V1n, Vmn] ∩R0 = ∅ and either m = n, or 2 ≤ m < n and [Vmn, Vm+1,n] ∩R0 6= ∅. Then
m individuals belong to the same litter, say litter k. This happens with probability
q(n : m). What family this litter belongs to is determined by a uniform random variable

on R
(v)
0 = Rτk−.

In case 1., we immediately find that the first part of our composition has size 1. The distribution

of the rest of the sample is determined by (Vin)i=2...n and R
(v)
0 . By the regenerative property,

the distribution of the rest of the sample will be the same as sampled with (Vi)i∈[n−1] from
R0.
In case 2., the lineages of the sample can be represented by Uk and (Vin)i=2...n and their

partition is obtained by sampling from R
(v)
0 = Rτk−, which by the regenerative property

yields the same result in distribution as sampling with (Vi)i∈[n] from R0.
In the third case, we know that the lineages represented by (Vin)i∈[m] have coalesced since
they originate from a common litter, say litter k, but we do not know to which family they
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0 166 66 6

?
V4

?
V7

?
V2

?
V5

?
V1

?
V3

?
V6

Figure 4: Illustration of sampling with (Vi)i∈[7] from the regenerative set that corresponds
to ρ̃0. The arrows indicate how the litters are related to each other. Compare with Figures 2
and 3.

belong. This is determined by the realization of Uk relative to R
(v)
0 , which, if 2 ≤ m < n,

together with the realization of (Vin)i=m+1,...,n determines the further coalescing of lineages.
As in case 2., the distribution will be the same as if we sample with (Vi)i∈[n−m+1] from R0.
The argument is now similar to the one in Möhle [6] and Dong et al. [2], with the main difference
that our case 2. above does not add any information about the final partition, whereas they
only have either mutations/freezing (our case 1.) or collisions (our case 3.) happening at each
stage. We thus get the recursion

q(a) = q(n : 1)′q(a − e1) + q(n : 1)′′q(a)

+

n
∑

m=2

q(n : m)

n−m+1
∑

j=1

j(aj + 1)

n − m + 1
q(a + ej − ej+m−1),

or equivalently, by (3), (4), (5) and Φ(n : m) =
(

n
m

)

λn,m for 2 ≤ m ≤ n,

Φ(n)q(a) = µnq(a − e1) + n

∫ 1

0

x(1 − x)n−1ν(dx)q(a)

+

n
∑

m=2

(

n

m

)

λn,m

n−m+1
∑

j=1

j(aj + 1)

n − m + 1
q(a + ej − ej+m−1),

and since Φ(n) − n
∫ 1

0 x(1 − x)n−1ν(dx) = µn +
∑n

m=2

(

n
m

)

λn,m = µn + λn, we arrive at (2),
and the proof is complete. �

We illustrate the procedure of the proof with Figure 4. The procedure amounts to moving
from left to right and note how the arrows hit R0 or its complement. First, V4 is alone in its
interval, corresponding to case 2. in the proof. At this point we cannot say anything about the
final partition since that litter may be related to the other individuals in our sample. Next,
V7 hits R0 so that it is in a family of its own (case 1.). The next event is that both V2 and
V5 fall in the same interval, corresponding to a merger of their lineages and case 3. in the
proof. After that, we have a case 2. for the lineage of 2 and 5. Next, we find that the litter
of individual 4 is a root. Then lineages 1, 3 and 6 coalesce. The penultimate event is that
the litters of lineages 2 and 5, and 1, 3 and 6, are related to the same litter, and thus these
lineages coalesce. The final event is finding that this litter also is a root. Thus the partition
is

{

{1, 2, 3, 5, 6}, {4}, {7}
}

, just as the example of Figure 1. The order of the collisions and
mutations is also the same as in that example.

Remark 2 Our construction of ρ requires ν to be a measure on (0, 1) with
∫

(0,1)
xν(dx) < ∞.

This excludes a large class of Λ-coalescents. The moment condition is necessary when we want
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to construct the multiplicative subordinator F (s : ρ̃0) (whose properties we use repeatedly)
from the point process {(τi, Xi)}i∈N. Nevertheless, it might be possible to obtain a convergence
result analogous to the one of Proposition 1, but we have not been able to do so.
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