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Abstract

In this paper, a branching process approximation for the spread of a
Reed-Frost epidemic on a network with tunable clustering is derived.
The approximation gives rise to expressions for the epidemic threshold
and the probability of a large outbreak in the epidemic. It is investigated
how these quantities varies with the clustering in the graph and it turns
out for instance that, as the clustering increases, the epidemic threshold
decreases. The network is modelled by a random intersection graph, in
which individuals are independently members of a number of groups and
two individuals are linked to each other if and only if they share at least
one group.

Keywords: Epidemics, random graphs, clustering, branching process, epi-
demic threshold.
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1 Introduction

This paper is concerned with Reed-Frost epidemics modified to take place
on random networks. Introduced in 1928 by two medical researchers, Lowell
Reed and Wade Frost, the Reed-Frost model is one of the simplest stochas-
tic epidemic models. The spread of the infection takes place in generations:
Each individual that is infective at time t (t = 0, 1, . . .) independently makes
contacts with all other individuals in the population with some probability p,
and if a contacted individual is susceptible, it becomes infected at time t + 1.
Also at time t + 1, the infective individuals from time t are removed from the
epidemic process.

The behavior of the Reed-Frost model is well understood, see e.g. von Bahr
and Martin-Löf (1980). A crucial assumption which simplifies the analysis of
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the model is that the population in which the epidemic takes place is taken
to be homogeneously mixing, that is, an infective individual is assumed to
make contacts with all other individuals in the population with the same
probability. This assumption is of course very unrealistic, since, in a real-life
epidemic, an infective individual is much more likely to infect individuals with
whom he/she has some kind of social connection. The Reed-Frost model can
easily be adapted to incorporate this type of heterogeneity by introducing a
graph to represent the social structure in the population and then stipulating
that infective individuals can only infect their neighbors in the social network;
see Section 3. This modification makes the analysis of the model two-fold.
Firstly, one wants to find a realistic model for the underlying social network,
and, secondly, one wants to study the behavior of the epidemic on this graph.

Large complex networks such as social contact structures, the internet and
various types of collaboration networks have received a lot of attention during
the last few years; see e.g. Dorogovtsev and Mendes (2003) and Newman et
al. (2006) and the references therein. As for social networks, one of their most
striking features is that they are highly clustered, meaning roughly that there
is a large number of triangles and other short cycles; see e.g. Newman (2003).
This is a consequence of the fact that friendship circles are typically strongly
overlapping so that many of our friends are also friends of each other. A
model that captures this in a natural way is the so called random intersection
graph, which is described in Section 2. Roughly, the idea of the model is that
people are members of groups — families, schools, workplaces etc. — and an
edge is drawn between two individuals if they share at least one group. If
the relation between the number of individuals and the number of groups is
chosen appropriately, this leads to a graph where the amount of clustering can
be tuned by adjusting the parameters of the model.

An important goal of network modelling is to investigate how the structure
of the network affects the behavior of various types of dynamic processes on
the network; see Durrett (2006) for an overview. When it comes to epidemics,
Andersson (1999) is a comprehensible introduction, in which expressions for
the epidemic threshold, the probability of a large outbreak and the final size
of the epidemic are derived in a heuristic way for a number of underlying
graphs. Here, the epidemic threshold, commonly denoted by R0, is defined as
a function of the parameters of the model such that a large outbreak in the
epidemic has positive probability if and only if R0 > 1. In epidemic modelling,
a common technique for deriving expressions for the epidemic threshold and
the probability of a large outbreak is to use branching process approximations
of the early stages of the epidemic. However, when studying epidemics on
networks, dependencies between the edges in the graph tend to make branching
process approximations more complicated. Results for epidemics on graphs
with arbitrary degree distribution can be found in Andersson (1998), and
Erdős-Rényi graphs and some extensions thereof are dealt with in Neal (2004,
2006). There is however very little work done on more complicated graph
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structures.
The aim of this paper is to give a rigorous analysis of how clustering in a

network affects the spread of an epidemic. The network is modelled by a ran-
dom intersection graph with tunable clustering and we then let a Reed-Frost
epidemic propagate on this graph. Comparing the epidemic with a certain
branching process yields (implicit) expressions for the epidemic threshold and
the probability of a large outbreak. Numerical evaluations reveal that, as the
clustering increases, the epidemic threshold decreases — that is, large out-
breaks are possible for larger parts of the parameter space — but also that the
actual value of the probability of a large outbreak decreases as the clustering
approaches its maximal value. To our knowledge, this is the first rigorous
investigation of how the spread of an epidemic is affected by clustering.

In Newman (2003:2), the effect of clustering on epidemics is studied by
heuristic means, and calculations therein indicate that indeed the epidemic
threshold should decrease as the clustering increase. Furthermore, Trapman
(2007) studies epidemics on graphs with a given expected number of triangles,
but the construction of the graph is more involved there. We mention also the
work by Ball et al. (1997) on the so called household model, which describes the
spread of an epidemic in a population with group structure. The model there
however is not formulated in terms of an underlying graph and the concept of
clustering is not considered.

The paper is organized as follows. In Section 2, random intersection graphs
and their properties are described in more detail. Section 3 contains the main
result — a comparison of a Reed-Frost epidemic on a random intersection
graph with a branching process — and its proof. In Section 4, the final size
of the epidemic is commented on. It is observed that a thinned random in-
tersection graph is in fact not a random intersection graph, implying that
results concerning the component structure in a random intersection graph
cannot be used to draw conclusions about the final size of the epidemic. In
Section 5, numerical results are presented and, finally, Section 6 contains a
short discussion.

2 Random intersection graphs

Random intersection graphs were introduced in Singer (1995) and Karoński
et al. (1999). In its simplest form, the model is defined as follows: Given a
set V of n vertices and a set A of m auxiliary vertices, construct a bipartite
graph Bn,m,r by letting each edge between vertices v ∈ V and a ∈ A exist
independently with probability r. The random intersection graph Gn,m,r with
vertex set V is obtained by connecting two vertices v,w ∈ V if and only if
there is a vertex a ∈ A such that a is linked to both v and w in Bn,m,r. This
construction can be generalized in various ways — see e.g. Godehardt and
Jaworski (2002) and Deijfen and Kets (2007) — but in this paper we will stick
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to the above formulation. We will also specialize to the case when m = ⌊βnα⌋
for some constants α, β > 0; see Karoński et al. (1999) for a motivation of this
choice of m. In fact, to get a graph with tunable clustering, we will soon take
α = 1.

If the vertices in V and A are thought of as individuals and groups re-
spectively, then the random intersection graph provides a model for a social
network where individuals are connected if there is at least one group where
they are both members. The probability that two individuals do not share
any group is (1 − r2)m, implying that the edge probability in the random in-
tersection graph is 1 − (1 − r2)m, and hence the expected degree of a fixed
vertex is

(n − 1)(1 − (1 − r2)m) = βr2n1+α + O(r4n1+2α).

To keep this expression bounded as n → ∞, we let r = γn−(1+α)/2 for some
γ > 0. The expected degree then tends to βγ2 as n → ∞.

As for the asymptotic distribution of the vertex degree with the above
choices of m and r, it is shown in Stark (2004) to be a point mass at 0
for α < 1, a compound Poisson distribution, describing the law of a sum
of a Poisson(βγ) distributed number of independent Poisson(γ) variables for
α = 1, and a Poisson(βγ2) distribution for α > 1. To see this, note that the
number of groups that an individual belongs to is binomially distributed with
mean mr = βγn(α−1)/2. For α < 1, this goes to 0 as n → ∞, explaining the
point mass at 0. For α = 1, the number of group memberships per individual
is asymptotically Poisson(βγ) distributed, and the sizes of the groups are
Poisson(γ), with overlaps between groups being very unlikely if n is large,
indicating that the degree distribution should indeed be compound Poisson.
When α > 1, each individual belongs to infinitely many groups as n → ∞.
This means that the edge indicators are asymptotically independent, which
suggests a Poisson distribution for the vertex degree. In fact, for α > 1,
the random intersection graph is similar to the standard Erdős-Rényi random
graph; see Fill et al. (2000).

Moving on to the clustering in the graph, for two vertices v,w ∈ V, let Ivw

denote the edge indicator for the edge between v and w in Gn,m,r, and write
Pn for the probability measure of Gn,m,r. We then define the clustering as

c = cα,β,γ := lim
n→∞

Pn(Ivw = 1|IvuIwu = 1),

that is, c is the limiting conditional probability that there is an edge between
two vertices v and w, given that they have a common neighbor u. The expected
number of groups that individual u belongs to is βγn(α−1)/2, which goes to 0,
βγ or infinity, depending on whether α < 1, α = 1 or α > 1. As a consequence,
the limiting probability that two individuals v and w who both share a group
with u in fact share the same group with u — thus being connected to each
other — will behave differently depending on the value of α. More specifically,
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it is shown in Deijfen and Kets (2007) that

cα,β,γ =







1 if α < 1;
(1 + βγ)−1 if α = 1;
0 if α > 1.

In view of the result from Stark (2004) concerning the degree distribution
and the characterization of the clustering from Deijfen and Kets (2007), the
best choice if we want to use a random intersection graph to describe a social
network seems to be α = 1. This gives rise to a model where both the mean
degree and the clustering can be tuned by adjusting the parameters β and γ.
More precisely, with D denoting the limiting degree of a fixed vertex, we have
that

E[D] = βγ2 and c = (1 + βγ)−1.

For the remainder of this paper we fix α = 1 and write G(n)
β,γ = G(n) and

B(n)
β,γ = B(n) for the corresponding random intersection graph and its underly-

ing bipartite graph (omitting the subscripts when the dependence on β and γ
does not need to be emphasized).

3 The epidemic model and an approximating branch-

ing process

Consider a closed homogeneous population consisting of n individuals, la-
belled v1, . . . , vn, with a social structure represented by a random intersection
graph G(n). We will use the Reed-Frost dynamics to describe the spread of
an infection in this population. The social graph G(n) is assumed to be fixed
throughout the spread of the infection. Furthermore, for simplicity, we start
with one single randomly selected infective individual at time 0, the rest of the
population being susceptible. Without loss of generality, we assume that the
initial infective, which will be referred to as the index case, is individual v1.
An individual that is infective at time t (t = 0, 1, . . .) contacts each one of its
neighbors in G(n) independently with some probability p, and if a contacted
neighbor is susceptible, it becomes infective at time t + 1. The individuals
that were infective at time t are removed from the epidemic process at time
t + 1 (by immunity or death) and take no further part in the spread of the
infection.

We will be concerned with the set E(n) of individuals that are ultimately
affected by the above epidemic. More precisely, we will construct a branching
process that can be used to determine whether E(n) is finite or infinite in the
limit as n → ∞. To this end, first note that E(n) can be identified with the
cluster containing the index case in an edge percolation process on G(n) in
which each edge is open independently with probability p. Open edges in
the percolation process are interpreted as possible transmission links for the
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disease, that is, if one of the vertices of an edge is infective at time t and
the other one is not, then the uninfected vertex becomes infective at time
t + 1. Furthermore, if we consider the percolation cluster of a particular
vertex restricted to a subgraph of G(n), then the size of this cluster has the
same distribution as the final size of a Reed-Frost epidemic on the subgraph. In
particular, if Rk is the size of the percolation cluster of a given vertex belonging
to a complete subgraph with k nodes, then the distribution of Rk, denoted
by Fk, is that of a Reed-Frost epidemic initiated by one single individual in
a homogeneously mixing population of size k. The distribution Fk can be
computed recursively; see Andersson and Britton (2000: Section 1.2).

We now define the branching process that will be used to approximate the
epidemic process. To begin with, note that the groups in a random inter-
section graph generate complete subgraphs with sizes that are asymptotically
Poisson(γ) distributed. Hence, in the limit as n → ∞, the size of an outbreak
started by a given individual in a given group is

R ∼ F :=

∞
∑

k=0

Fk
γk

k!
e−γ . (1)

Recall that the number of groups that a given individual is a member of is
asymptotically Poisson(βγ) distributed. Let f be the generating function of a
sum of a Poisson(βγ) number of i.i.d. variables R1, R2, . . . , all distributed as
R, that is,

f(s) = exp
{

βγ(E[sR] − 1)
}

, (2)

and let {Z(t) : t ≥ 0} be a discrete time branching process with offspring
generating function f , that is, E[sZ(1)] = f(s). Finally, write E for the total
progeny in such a process, that is,

E =
∞
∑

t=0

Z(t).

Let E(n) = |E(n)| denote the final size of a Reed-Frost epidemic on a random
intersection graph G(n). Our main result is the following theorem, which will
be proved by relating the initial phases of the epidemic to a branching process
with the same distribution as {Z(t) : t ≥ 0} as n → ∞.

Theorem 3.1 As n → ∞, we have that E(n) → E in distribution.

Define ρ to be the smallest non-negative root of the equation f(ρ) = ρ.
It follows from standard results in branching processes theory that P (E =
∞) = 1 − ρ and that ρ < 1 if and only if E[Z(1)] > 1; see e.g. Athreya and
Ney (1972). Combining this with Theorem 3.1 gives the following corollary
concerning the asymptotic behavior of the epidemic.
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Corollary 3.2 Define R0 := E[Z(1)] = βγE[R] and write π = 1 − ρ. As

n → ∞, we have that

(a) E(n) → ∞ with probability π;

(b) π > 0 if and only if R0 > 1.

Before we continue with the proof of the theorem, we will state and prove
a lemma concerning the bipartite graph B(n). To this end, for an arbitrary
graph G with vertex set W, the subgraph of G induced by some subset W ′ ⊂ W
is defined to be the subgraph consisting the vertices in W ′ together with all
edges in G that run between vertices in W ′. Let C(n)(t) be the vertices of B(n)

at distance t from vertex v1. Note that a vertex in B(n) may be either an
individual (that is, a vertex v ∈ V) or a group (that is, an auxiliary vertex
a ∈ A ), and that vertices at odd distance from v1 correspond to groups and
vertices at even distance to individuals.

Lemma 3.3 Let κ > 0 be such that 1/κ > 2 log(βγ2). As n → ∞, the

probability that the subgraph of B(n) induced by C(n)(⌊κ log n⌋), is a tree, tends

to 1.

Proof of Lemma 3.3 We will build up C(n)(t) by a sequence {D(n)(t) : t ≥
0}, constructed in such a way that C(n)(t) = ∪0≤s≤tD(n)(s). For odd t, the
set D(n)(t) will consist of groups and for even t by individuals. To begin
with, by definition, we have C(n)(0) = {v1}, so necessarily D(n)(0) = C(n)(0).
For odd t, the set D(n)(t) is then constructed by choosing, independently
for each individual in D(n)(t − 1), a Binomial(m,γ/n) distributed number of
distinct groups in A, and, likewise, for even t, we construct D(n)(t) by choosing,
independently for each group in D(n)(t − 1), a Binomial(n, γ/n) distributed
number of distinct individuals in V. Let X(n) be a compound binomial random
variable with generating function

g(s) = E
[

sX(n)
]

=
(

1 − γ

n
+

γ

n

(

1 − γ

n
+

γ

n
s
)n)m

,

and let {X(n)(t) : t ≥ 0} be a branching process with offspring distribution
X(n). Furthermore, write Y (n)(t) =

∑t
s=0 X(n)(s) for the total progeny of the

branching process at time t. Then, for even t, the number of individuals (not
necessarily distinct) that have been chosen in the construction of the process
C(n)(t), has the same distribution as Y (n)(t/2), and the number of groups (not
necessarily distinct) that have been chosen is (stochastically) strictly smaller
than Y (n)(t/2).

Define µn := E[X(n)] = γ2m/n and note that βγ2(1 − 1
n) ≤ µn ≤ βγ2,

so µn → µ := βγ2 as n → ∞. By a well known result in branching process
theory, we have that µ−t

n X(n)(t) → W (n) almost surely as t → ∞, where W (n)

is a random variable with W (n) ≡ 0 if and only if µn ≤ 1; see Athreya and Ney

7



(1972). Furthermore, W (n) → W in distribution as n → ∞, where W is the
corresponding limiting random variable for the branching process {X(t) : t ≥
0} with offspring generating function E[sX(1)] = exp{βγ(eγ(s−1) − 1)}. Thus

X(n)(t) = µt
n(W (n) + ot(1)) = µt

n(W + on(1) + ot(1)) ≤ µt(On(1) + Ot(1)),

where ox(·) and Ox(·) is the usual order notation when x → ∞. It follows
that Y (n)(t) ≤ µt(On(1) + Ot(t)), and, when we set t = ⌊κ log n⌋ with 1/κ >
max{2 log µ, 0}, we get

Y (n)(⌊κ log n⌋) ≤ elog µ⌊κ log n⌋On(log n) = on(
√

n).

Now note that, if all individuals and groups that have been chosen in the
construction of C(n)(t) are distinct, then clearly the subgraph of B(n) induced
by C(n)(t) is a tree. Thus the probability in the statement of the lemma is
greater than

Y (n)(⌊κ log n⌋)
∏

k=1

(

1 − k

n

)(

1 − k

m

)

=

= exp

{ o(
√

n)
∑

k=1

(

log

(

1 − k

n

)

+ log

(

1 − k

m

))}

= exp

{

−
(

1 +
1

β

) o(
√

n)
∑

k=1

(

k

n
+ O

(

k2

n2

))}

= exp{o(1)} → 1,

and the lemma is proved. 2

Proof of Theorem 3.1 The idea of the proof is to construct a branching
process {Z(n)(t) : t ≥ 0} that counts the number of individuals infected by
the epidemic in its initial stage, though not necessarily in chronological order.
The branching process will be defined in such a way that, if it goes extinct,
then its total progeny will be equal to the final size of the epidemic, while, if
it explodes, the epidemic will have infected a number of individuals which is
increasing polynomially in n. As n → ∞, we will have Z(n) → Z — where Z
is the branching process in the formulation of the theorem — and the theorem
thus follows.

First, we describe the initial spread of the disease among the individu-
als/groups in the set C(n)(⌊κ log n⌋) with a process {E(n)(t) : 0 ≤ t ≤ ⌊κ log n⌋}.
We only consider the case when the subgraph of B(n) induced by C(n)(⌊κ log n⌋)
is a tree. By Lemma 3.3, the probability of the complimentary set tends to
zero as n → ∞, so we can disregard it. Furthermore, our construction will
be such that E(n)(t) ⊆ C(n)(t) for all t, implying that nodes of E(n)(⌊κ log n⌋)
constitute a tree itself if seen as a subgraph of B(n).
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The construction of E(n)(t) is similar to the construction of C(n)(t) de-
scribed in Lemma 3.3. Namely, we will define a sequence {F (n)(t) : 0 ≤ t ≤
⌊κ log n⌋} and then set E(n)(t) = ∪0≤s≤tF (n)(s). To this end, first let F (n)(0)
consist of the initial infective, that is F (n)(0) = {v1}. Then, for odd t, let
F (n)(t) consist of the groups of the individuals in F (n)(t − 1) that are at
distance t from v1, that is,

F (n)(t) = {a ∈ D(n)(t) : ∃v ∈ F (n)(t − 1) such that v ∈ a}.

To define F (n)(t) for even t, recall the percolation representation of the set
of ultimately infected individuals in G(n) described before the theorem. For
two vertices v,w belonging to a group a, write v

a↔ w for the event that there
exists a path of open edges — that is, edges that can be used for disease
transmission — connecting v and w, with the additional property that the

whole path is contained in group a. Furthermore, let Ka,v = {w ∈ a : v
a↔ w}.

This is to be thought of as the local outbreak in group a caused by individual
v, if v itself becomes infected from outside of group a. As pointed out before
the formulation of the theorem, given that |a| = k, we have that |Ka,v | ∼ Fk,
where Fk is the distribution of the final size of of a homogeneous Reed-Frost
epidemic initiated by a single individual in a population of size k. Note that
|a| ∼ Binomial(n, γ/n), and, for future use, let R(n) be a random variable
with distribution

∑

k FkP (|a| = k), that is, the size of a local outbreak in a
group, not conditioning on the group size. Now, for even t, define F (n)(t) to
be the individuals infected in the local outbreaks caused by the individuals in
F (n)(t − 2), that is,

F (n)(t) = {w ∈ Ka,v : a ∈ F (n)(t − 1), v ∈ F (n)(t − 2)}.

We will now study the growth of |E(n)(t)|. To this end, for 0 ≤ t ≤ 1
2⌊κ log n⌋,

define Z(n)(t) = |F (n)(2t)|. Then, since the subgraph of B(n) induced by
C(n)(2t) is a tree for t ≤ 1

2⌊κ log n⌋, by construction, Z(n)(t) is a branching
process with a compound binomial offspring distribution. The generating
function of the offspring distribution is

fn(s) = E
[

sZ(n)(1)
]

=
(

1 − γ

n
+

γ

n
E

[

sR(n)
])m

. (3)

For t ≥ 1
2⌊κ log n⌋ we let Z(n)(t) evolve by the same branching mechanism,

that is, as a discrete time branching process with offspring distribution defined
by (3). For t ≥ 1

2⌊κ log n⌋ however, Z(n)(t) is no longer related to the epidemic
process.

Let ρn be the smallest non-negative root of ρn = fn(ρn), and define An =
{limt→∞ Z(n)(t) = 0} (the extinction set) and Tn = inf{t : Z(n)(t) = 0} (the
extinction time). Then P(An) = ρn, and, since Tn is finite on An, the total
progeny of the branching process,

∑Tn

t=0 Z(n)(t), is finite on An. As n → ∞, we
have that Z(n) → Z in distribution and ρn → ρ, where Z(t) is the branching
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process appearing in the theorem and ρ the equivalent of ρn in this process.
Furthermore, T (n) → T in distribution, where T = inf{t : Z(t) = 0}. It
follows that E =

∑∞
t=0 Z(t) is finite on the event A = {limt→∞ Z(t) = 0}.

This implies that, on An, the final size E(n) of the epidemic converges to
E as n → ∞. On the complementary sets Ac

n, the process Z(n)(t) grows
exponentially in t. More precisely,

Z(n)(⌊κ log n⌋) = nκ log R0(W ′ + o(1)),

where W ′ > 0 due to the conditioning on explosion (recall the proof of Lemma
3.3). Furthermore, we have that Z(n)(⌊κ log n⌋) ≤ E(n) on Ac

n, and thus
E(n) → ∞ on Ac

n. This proves the theorem. 2

4 The final outcome of the epidemic

The branching process approach from the previous section gives basically no
information on the behavior of the epidemic in the case of explosion. In this
section we will elaborate a bit on this problem.

As already described, one way of getting a grip of the final outcome of the
epidemic, is to consider an edge percolation process on the underlying graph,
where each edge in the graph is independently removed with probability 1− p
and kept with probability p. The vertices that belong to the component of the
initial infective in the graph so obtained correspond to the individuals that
have experienced the infection at the end of the epidemic. If the structure
of the thinned graph is known, then this observation might be useful in in-
vestigating the final size of the epidemic. For instance, if there is a unique
giant component in the thinned graph — that is, if the outcome of the per-
colation process contains a unique cluster of order n — then the relative size
of this component gives the probability of an outbreak of order n in the epi-
demic. Such an outbreak is often referred to as a major outbreak, and, in
most epidemic models, the probability of such an outbreak coincides with the
probability of explosion in the branching process describing the initial stages
of the epidemic (denoted by π in this paper). This however require additional
arguments.

In our case, the social network is a random intersection graph with α = 1.
Unfortunately, to date there are no rigorous results concerning the component
structure in a random intersection graph with α = 1, but see Behrisch (2007)
for results when α 6= 1. Also, in Newman (2003:2), (implicit) expressions
for the size of the largest component in a random graph construction which
is similar to the random intersection graph are derived by heuristic means
and it is observed that the relative final size of the giant component seems to
decrease as the clustering in the graph increases. An argument in support of
the claim that high clustering in a graph causes the components to be small is
the following: Consider an arbitrary graph with n vertices and k = O(n) edges
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and assume that the clustering equals 1. This implies that all subgraphs are
complete. Hence, with nmax denoting the size of the largest subgraph, we have
that the number of edges in the maximal subgraph is

(nmax

2

)

. It follows that

nmax ≤ O(
√

k) = O(
√

n), that is, the relative size of the largest component
tends to zero,

Indeed, the lack of rigorous results concerning the components in a random
intersection graph with α = 1 makes it harder to study the final size of an
epidemic on such a graph. A second complicating circumstance is that thinning
a random intersection graph gives rise to a graph that no longer belongs to the
class of random intersection graphs; see the below proposition. This means
that, even if there would be results for the component structure, these would
not be applicable to a thinned graph. Hence it remains an open problem to
quantify the final outcome of the epidemic.

Proposition 4.1 Let Θp(G(n)
β,γ) denote the graph generated by removing edges

in G(n)
β,γ independently with probability 1 − p. It does not exist β′ = β′(β, γ, p)

and γ′ = γ′(β, γ, p) such that Θp(G(n)
β,γ)

d
= G(n)

β′,γ′ for every n.

Proof. The idea of the proof is to observe that certain types of subgraphs

will appear with different frequency in Θp(G(n)
β,γ) as compared to G(n)

β,γ . The
subgraph that we will consider consists of four vertices and five edges:

•

@

@

@

@

@

@

@

•

• •

Write K ′
4 for this graph type, and note that it can be obtained for instance by

removing one edge from a complete subgraph with four vertices, a graph type
that we denote by K4. Furthermore, we introduce the term vertex-induced

subgraph, for a subgraph of some given graph such that the subgraph consists
of a subset of the vertices in the original graph together with all edges between
these vertices that are present in the original graph.

The number X4 of vertex-induced subgraphs of type K4 in the random

intersection graph G(n)
β,γ dominates the number of groups of size four in the

construction of the random intersection graph. Since the size of a fixed
group is Binomial(n, γ/n) distributed, the number of groups of size four is
Binomial(⌊βn⌋,

(n
4

)

(γ/n)4(1− γ/n)n−4) distributed, and hence E[X4] ≥ O(n).
It follows that the number X ′

4(p) of vertex-induced subgraphs of type K ′
4 in

the thinned graph Θp(G(n)
β,γ) is also at least of the order n, since, as mentioned,

one way of obtaining graphs of type K ′
4 is to remove one edge in graphs of

type K4, that is, E[X ′
4(p)] ≥ (1 − p)p5E[X4] ≥ O(n).

Now consider the number X ′
4 of vertex-induced subgraphs of type K ′

4 in

the random intersection graph G(n)
β,γ . This number is related to the number

11



of ways that four individuals v1, . . . , v4 can be assigned to different groups so
that a graph of type K ′

4 is obtained. Consider for instance the following graph
of type K ′

4:
v1•

>

>

>

>

>

>

>

>

•v2

v3• •v4

Write {(vi1 , vi2)(vj1 , vj2)(vk1 , vk2)} for the event that vi1 and vi2 share a group,
that vj1 and vj2 share another group and that vk1 and vk2 share yet another
group. Then, for the above graph to arise, the individuals v2 and v3 cannot
share any group — the probability that they avoid doing so goes to 1 as n → ∞
— and, in addition, one of the following events must occur:

{(v1, v2, v4)(v1, v3, v4)}
{(v1, v2, v4)(v1, v3)(v3, v4)}
{(v1, v3, v4)(v1, v2)(v2, v4)}
{(v1, v2)(v1, v4)(v2, v4)(v1, v3)(v3, v4)}.

It follows that

E[X ′
4] ≤ n4

(⌊βn⌋
2

)

(γ/n)6 + 2n4

(⌊βn⌋
3

)

(γ/n)7

+ n4

(⌊βn⌋
5

)

(γ/n)10 = O(1).

The number of vertex-induced subgraphs of type K ′
4 in a random intersec-

tion graph is hence finite, while, in a thinned random intersection graph, it is
of order n. This proves the proposition. 2

5 Numerical results

In this section, we investigate numerically the epidemic threshold R0 and the
probability π of explosion in the epidemic — recall Corollary 3.2. We have
R0 = βγE[R], where the distribution of R is specified in (1), and π := 1 − ρ,
where ρ is the smallest non-negative root of the equation f(ρ) = ρ and f
is the generating function specified in (2). Using the recursive formulas for
the distribution Fk of the final size a Reed-Frost epidemic in a homogeneous
population of size k — see e.g. Andersson and Britton (2000: Section 1.2) —
numerical values of R0 and π are easily obtained for fixed values of β and γ.

We are particularly interested in how ρ and R0 are affected when the
(asymptotic) clustering c = (1 + βγ)−1 is varied, and, to be able to compare
results for different values of c, the mean degree µ = βγ2 in the graph is kept
fixed. In Figure 1, the parameters R0 and π are plotted against c for three
different values of the infection probability p. Let us comment a bit on these
plots.
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Figure 1: In the top figure, R0 is plotted against c for fixed µ = 4 and for
three choices of p : p = 0.2 (——), 0.3 (– – –), and 0.5 (– · –). The bottom
figure shows how the probability π of explosion in the epidemic varies with c,
for fixed µ = 4, and the same choices of p as above.
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First we investigate the value of R0 in the limit as c → 0. Since µ is fixed,
we have that c = (1+µ/γ)−1 → 0 implies that γ → 0 as well. Asymptotically,
the degree distribution in our random intersection graph is compound Poisson
with generating function

g(s) = eβγ(eγ(s−1)−1)

which converges to eµ(s−1) as γ → 0. The limiting degree distribution as
c → 0 is hence Poisson(µ), and, after thinning the graph, removing each edge
independently with probability 1−p, the degrees are Poisson distributed with
mean pµ. Since the graph obtained by such a thinning can be thought of
as representing the outcome of the epidemic, it is reasonable to suspect that
R0 = pµ in the limit as c → 0. Indeed, it can be seen in the top plot in Figure
1 that R0 → pµ as c → 0.

In the top plot in Figure 1, it can also be seen that R0 increases with c,
that is, higher clustering makes it easier for epidemics to take off. This is in
line with findings in Newman (2003:2). Let us give a heuristic explanation of
why this should be the case: First note that, since the mean degree µ in the
graph is fixed, an increase in c = (1 + µ/γ)−1 is equivalent to an increase in
γ and a decrease in β of the order γ−2. Also, recall that the mean number of
groups that an individual is a member of is βγ and the mean group size is γ.
Hence, increased clustering with fixed mean degree means that individuals are
members of fewer but larger groups. Combining this with the observation that
the probability for an individual to avoid infection from some index case with
whom he/she shares a group decreases geometrically with the group size, it
follows that it should be easier for an epidemic to take off when the clustering
is large. In fact, we have that R0 → µ as c → 1, that is, in the limit of large
clustering, the infection probability p does not matter (as long as it is positive)
for the value of R0.

The bottom plot in Figure 1 shows how the probability π of explosion in
the epidemic varies with c. For instance, it can be seen that π → 0 as c → 1.
In Section 4, we argued that the relative size of the largest component in a
graph with maximal clustering is 0 in the limit of large graph size. If the
probability of explosion in the epidemic coincides with the relative size of the
largest component in the graph representing the outcome of the epidemic, then
indeed it follows from this that π → 0 as c → 1. Furthermore, it is interesting
to note that the decrease of π towards 0 is not monotone for all values of p.
Clearly, if a low value of c prevents explosion, while explosion is possible for a
larger value of c — this is the case for instance for p = 0.2 — then we will see
an increase in π from 0 to a positive value when the threshold is passed. But,
as the curve for p = 0.3 reveals, even if π is positive already at c = 0, it can be
the case that it increases with c in some interval before it starts to decrease.
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6 Discussion

In the present paper, we have analyzed how the clustering in a random net-
work affects how an infectious disease propagates in the network, assuming
the size of the network to be large. In particular, using a random intersec-
tion graph construction, we have rigorously derived the limiting probability
of an explosion in the epidemic and a threshold parameter indicating if this
probability is 0 or positive.

The motivation for analyzing an epidemic on a random network with pos-
itive clustering is of course that most empirical social networks manifest posi-
tive clustering, so predictions based on epidemic models neglecting such clus-
tering, i.e. most epidemic models, must be interpreted with caution. There
are of course several other features in empirical networks, not considered in
the present paper, that should also be taken into account for predictions to be
reliable. One such feature is the degree distribution, which in many social net-
works has been observed to follow a power-law distribution. The graph model
used in this paper gives compound Poisson distributions for the degrees, but
the model is generalized in Deijfen and Kets (2007) to allow for power-law
degree distributions. It would be interesting to study how an epidemic on
such a generalized graph is affected by the exponent in the power-law. An-
other feature that has been observed in many social networks is positive degree
correlation, that is, individuals with high (low) degree tend to be connected
to other individuals with high (low) degree. Because of the group structure,
this is likely to be the case in a random intersection graph, but it remains to
quantify the correlation.

A possible generalization of the studied model would be to distinguish
between different types of individuals, and to assume that both network char-
acteristics as well as transmission probabilities depend on the type of an in-
dividual; see e.g. Ball and Clancy (1993). Another extension, motivated by
real-world epidemics, is to leave the Reed-Frost paradigm, in which the events
that different neighbors of a given infective becomes infected are independent.
If for example the infectious period is taken to be random, then these events
are positively correlated; see e.g. Andersson and Britton (2000). Unfortu-
nately, by relaxing the independence assumption the analysis of the model
becomes much more complicated.

Perhaps the most obvious continuation of the present work is however to
derive fully rigorous results about the final size of the epidemic in case of
explosion. The (relative) final size of the epidemic then most likely coincides
with the probability of explosion, a quantity derived in the present paper, but
a proof of this is still missing.
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